987 resultados para Multi-core platforms
Resumo:
The last decade has witnessed a major shift towards the deployment of embedded applications on multi-core platforms. However, real-time applications have not been able to fully benefit from this transition, as the computational gains offered by multi-cores are often offset by performance degradation due to shared resources, such as main memory. To efficiently use multi-core platforms for real-time systems, it is hence essential to tightly bound the interference when accessing shared resources. Although there has been much recent work in this area, a remaining key problem is to address the diversity of memory arbiters in the analysis to make it applicable to a wide range of systems. This work handles diverse arbiters by proposing a general framework to compute the maximum interference caused by the shared memory bus and its impact on the execution time of the tasks running on the cores, considering different bus arbiters. Our novel approach clearly demarcates the arbiter-dependent and independent stages in the analysis of these upper bounds. The arbiter-dependent phase takes the arbiter and the task memory-traffic pattern as inputs and produces a model of the availability of the bus to a given task. Then, based on the availability of the bus, the arbiter-independent phase determines the worst-case request-release scenario that maximizes the interference experienced by the tasks due to the contention for the bus. We show that the framework addresses the diversity problem by applying it to a memory bus shared by a fixed-priority arbiter, a time-division multiplexing (TDM) arbiter, and an unspecified work-conserving arbiter using applications from the MediaBench test suite. We also experimentally evaluate the quality of the analysis by comparison with a state-of-the-art TDM analysis approach and consistently showing a considerable reduction in maximum interference.
Resumo:
For the past several decades, we have experienced the tremendous growth, in both scale and scope, of real-time embedded systems, thanks largely to the advances in IC technology. However, the traditional approach to get performance boost by increasing CPU frequency has been a way of past. Researchers from both industry and academia are turning their focus to multi-core architectures for continuous improvement of computing performance. In our research, we seek to develop efficient scheduling algorithms and analysis methods in the design of real-time embedded systems on multi-core platforms. Real-time systems are the ones with the response time as critical as the logical correctness of computational results. In addition, a variety of stringent constraints such as power/energy consumption, peak temperature and reliability are also imposed to these systems. Therefore, real-time scheduling plays a critical role in design of such computing systems at the system level. We started our research by addressing timing constraints for real-time applications on multi-core platforms, and developed both partitioned and semi-partitioned scheduling algorithms to schedule fixed priority, periodic, and hard real-time tasks on multi-core platforms. Then we extended our research by taking temperature constraints into consideration. We developed a closed-form solution to capture temperature dynamics for a given periodic voltage schedule on multi-core platforms, and also developed three methods to check the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research by incorporating the power/energy constraint with thermal awareness into our research problem. We investigated the energy estimation problem on multi-core platforms, and developed a computation efficient method to calculate the energy consumption for a given voltage schedule on a multi-core platform. In this dissertation, we present our research in details and demonstrate the effectiveness and efficiency of our approaches with extensive experimental results.
Resumo:
Image and video compression play a major role in the world today, allowing the storage and transmission of large multimedia content volumes. However, the processing of this information requires high computational resources, hence the improvement of the computational performance of these compression algorithms is very important. The Multidimensional Multiscale Parser (MMP) is a pattern-matching-based compression algorithm for multimedia contents, namely images, achieving high compression ratios, maintaining good image quality, Rodrigues et al. [2008]. However, in comparison with other existing algorithms, this algorithm takes some time to execute. Therefore, two parallel implementations for GPUs were proposed by Ribeiro [2016] and Silva [2015] in CUDA and OpenCL-GPU, respectively. In this dissertation, to complement the referred work, we propose two parallel versions that run the MMP algorithm in CPU: one resorting to OpenMP and another that converts the existing OpenCL-GPU into OpenCL-CPU. The proposed solutions are able to improve the computational performance of MMP by 3 and 2:7 , respectively. The High Efficiency Video Coding (HEVC/H.265) is the most recent standard for compression of image and video. Its impressive compression performance, makes it a target for many adaptations, particularly for holoscopic image/video processing (or light field). Some of the proposed modifications to encode this new multimedia content are based on geometry-based disparity compensations (SS), developed by Conti et al. [2014], and a Geometric Transformations (GT) module, proposed by Monteiro et al. [2015]. These compression algorithms for holoscopic images based on HEVC present an implementation of specific search for similar micro-images that is more efficient than the one performed by HEVC, but its implementation is considerably slower than HEVC. In order to enable better execution times, we choose to use the OpenCL API as the GPU enabling language in order to increase the module performance. With its most costly setting, we are able to reduce the GT module execution time from 6.9 days to less then 4 hours, effectively attaining a speedup of 45 .
Resumo:
Modern multicore processors for the embedded market are often heterogeneous in nature. One feature often available are multiple sleep states with varying transition cost for entering and leaving said sleep states. This research effort explores the energy efficient task-mapping on such a heterogeneous multicore platform to reduce overall energy consumption of the system. This is performed in the context of a partitioned scheduling approach and a very realistic power model, which improves over some of the simplifying assumptions often made in the state-of-the-art. The developed heuristic consists of two phases, in the first phase, tasks are allocated to minimise their active energy consumption, while the second phase trades off a higher active energy consumption for an increased ability to exploit savings through more efficient sleep states. Extensive simulations demonstrate the effectiveness of the approach.
Resumo:
Systems composed of distinct operational modes are a common necessity for embedded applications with strict timing requirements. With the emergence of multi-core platforms protocols to handle these systems are required in order to provide this basic functionality.In this work a description on the problems of creating an effective mode-transition protocol are presented and it is proven that in some cases previous single-core protocols can not be extended to handle the mode-transition in multi-core.
Resumo:
Distributed real-time systems such as automotive applications are becoming larger and more complex, thus, requiring the use of more powerful hardware and software architectures. Furthermore, those distributed applications commonly have stringent real-time constraints. This implies that such applications would gain in flexibility if they were parallelized and distributed over the system. In this paper, we consider the problem of allocating fixed-priority fork-join Parallel/Distributed real-time tasks onto distributed multi-core nodes connected through a Flexible Time Triggered Switched Ethernet network. We analyze the system requirements and present a set of formulations based on a constraint programming approach. Constraint programming allows us to express the relations between variables in the form of constraints. Our approach is guaranteed to find a feasible solution, if one exists, in contrast to other approaches based on heuristics. Furthermore, approaches based on constraint programming have shown to obtain solutions for these type of formulations in reasonable time.
Resumo:
EMC2 finds solutions for dynamic adaptability in open systems. It provides handling of mixed criticality multicore applications in r eal-time conditions, withscalability and utmost flexibility, full-scale deployment and management of integrated tool chains, through the entire lifecycle.
Resumo:
Multi-core processors is a design philosophy that has become mainstream in scientific and engineering applications. Increasing performance and gate capacity of recent FPGA devices has permitted complex logic systems to be implemented on a single programmable device. By using VHDL here we present an implementation of one multi-core processor by using the PLASMA IP core based on the (most) MIPS I ISA and give an overview of the processor architecture and share theexecution results.
Resumo:
Los procesadores multi-core y el multi-threading por hardware permiten aumentar el rendimiento de las aplicaciones. Por un lado, los procesadores multi-core combinan 2 o más procesadores en un mismo chip. Por otro lado, el multi-threading por hardware es una técnica que incrementa la utilización de los recursos del procesador. Este trabajo presenta un análisis de rendimiento de los resultados obtenidos en dos aplicaciones, multiplicación de matrices densas y transformada rápida de Fourier. Ambas aplicaciones se han ejecutado en arquitecturas multi-core que explotan el paralelismo a nivel de thread pero con un modelo de multi-threading diferente. Los resultados obtenidos muestran la importancia de entender y saber analizar el efecto del multi-core y multi-threading en el rendimiento.
Resumo:
La gestión de recursos en los procesadores multi-core ha ganado importancia con la evolución de las aplicaciones y arquitecturas. Pero esta gestión es muy compleja. Por ejemplo, una misma aplicación paralela ejecutada múltiples veces con los mismos datos de entrada, en un único nodo multi-core, puede tener tiempos de ejecución muy variables. Hay múltiples factores hardware y software que afectan al rendimiento. La forma en que los recursos hardware (cómputo y memoria) se asignan a los procesos o threads, posiblemente de varias aplicaciones que compiten entre sí, es fundamental para determinar este rendimiento. La diferencia entre hacer la asignación de recursos sin conocer la verdadera necesidad de la aplicación, frente a asignación con una meta específica es cada vez mayor. La mejor manera de realizar esta asignación és automáticamente, con una mínima intervención del programador. Es importante destacar, que la forma en que la aplicación se ejecuta en una arquitectura no necesariamente es la más adecuada, y esta situación puede mejorarse a través de la gestión adecuada de los recursos disponibles. Una apropiada gestión de recursos puede ofrecer ventajas tanto al desarrollador de las aplicaciones, como al entorno informático donde ésta se ejecuta, permitiendo un mayor número de aplicaciones en ejecución con la misma cantidad de recursos. Así mismo, esta gestión de recursos no requeriría introducir cambios a la aplicación, o a su estrategia operativa. A fin de proponer políticas para la gestión de los recursos, se analizó el comportamiento de aplicaciones intensivas de cómputo e intensivas de memoria. Este análisis se llevó a cabo a través del estudio de los parámetros de ubicación entre los cores, la necesidad de usar la memoria compartida, el tamaño de la carga de entrada, la distribución de los datos dentro del procesador y la granularidad de trabajo. Nuestro objetivo es identificar cómo estos parámetros influyen en la eficiencia de la ejecución, identificar cuellos de botella y proponer posibles mejoras. Otra propuesta es adaptar las estrategias ya utilizadas por el Scheduler con el fin de obtener mejores resultados.
Diseño y evaluación de un algoritmo paralelo para la eliminación gausiana en procesadores multi-core
Resumo:
Las aplicaciones de alineamiento de secuencias son una herramienta importante para la comunidad científica. Estas aplicaciones bioinformáticas son usadas en muchos campos distintos como pueden ser la medicina, la biología, la farmacología, la genética, etc. A día de hoy los algoritmos de alineamiento de secuencias tienen una complejidad elevada y cada día tienen que manejar un volumen de datos más grande. Por esta razón se deben buscar alternativas para que estas aplicaciones sean capaces de manejar el aumento de tamaño que los bancos de secuencias están sufriendo día a día. En este proyecto se estudian y se investigan mejoras en este tipo de aplicaciones como puede ser el uso de sistemas paralelos que pueden mejorar el rendimiento notablemente.
Resumo:
Due to various advantages such as flexibility, scalability and updatability, software intensive systems are increasingly embedded in everyday life. The constantly growing number of functions executed by these systems requires a high level of performance from the underlying platform. The main approach to incrementing performance has been the increase of operating frequency of a chip. However, this has led to the problem of power dissipation, which has shifted the focus of research to parallel and distributed computing. Parallel many-core platforms can provide the required level of computational power along with low power consumption. On the one hand, this enables parallel execution of highly intensive applications. With their computational power, these platforms are likely to be used in various application domains: from home use electronics (e.g., video processing) to complex critical control systems. On the other hand, the utilization of the resources has to be efficient in terms of performance and power consumption. However, the high level of on-chip integration results in the increase of the probability of various faults and creation of hotspots leading to thermal problems. Additionally, radiation, which is frequent in space but becomes an issue also at the ground level, can cause transient faults. This can eventually induce a faulty execution of applications. Therefore, it is crucial to develop methods that enable efficient as well as resilient execution of applications. The main objective of the thesis is to propose an approach to design agentbased systems for many-core platforms in a rigorous manner. When designing such a system, we explore and integrate various dynamic reconfiguration mechanisms into agents functionality. The use of these mechanisms enhances resilience of the underlying platform whilst maintaining performance at an acceptable level. The design of the system proceeds according to a formal refinement approach which allows us to ensure correct behaviour of the system with respect to postulated properties. To enable analysis of the proposed system in terms of area overhead as well as performance, we explore an approach, where the developed rigorous models are transformed into a high-level implementation language. Specifically, we investigate methods for deriving fault-free implementations from these models into, e.g., a hardware description language, namely VHDL.
Resumo:
The simulated annealing approach to structure solution from powder diffraction data, as implemented in the DASH program, is easily amenable to parallelization at the individual run level. Modest increases in speed of execution can therefore be achieved by executing individual DASH runs on the individual cores of CPUs.