878 resultados para Multi-cicle, Expectation, and Conditional Estimation Method
Resumo:
En este trabajo se implementa una metodología para incluir momentos de orden superior en la selección de portafolios, haciendo uso de la Distribución Hiperbólica Generalizada, para posteriormente hacer un análisis comparativo frente al modelo de Markowitz.
Resumo:
Multi-rate multicarrier DS-CDMA is a potentially attractive multiple access method for future wireless networks that must support multimedia, and thus multi-rate, traffic. Considering that high performance detection such as coherent demodulation needs the explicit knowledge of the channel, this paper proposes a subspace-based blind adaptive algorithm for timing acquisition and channel estimation in asynchronous multirate multicarrier DS-CDMA systems, which is applicable to both multicode and variable spreading factor systems.
Resumo:
This doctoral thesis focuses on ground-based measurements of stratospheric nitric acid (HNO3)concentrations obtained by means of the Ground-Based Millimeter-wave Spectrometer (GBMS). Pressure broadened HNO3 emission spectra are analyzed using a new inversion algorithm developed as part of this thesis work and the retrieved vertical profiles are extensively compared to satellite-based data. This comparison effort I carried out has a key role in establishing a long-term (1991-2010), global data record of stratospheric HNO3, with an expected impact on studies concerning ozone decline and recovery. The first part of this work is focused on the development of an ad hoc version of the Optimal Estimation Method (Rodgers, 2000) in order to retrieve HNO3 spectra observed by means of GBMS. I also performed a comparison between HNO3 vertical profiles retrieved with the OEM and those obtained with the old iterative Matrix Inversion method. Results show no significant differences in retrieved profiles and error estimates, with the OEM providing however additional information needed to better characterize the retrievals. A final section of this first part of the work is dedicated to a brief review on the application of the OEM to other trace gases observed by GBMS, namely O3 and N2O. The second part of this study deals with the validation of HNO3 profiles obtained with the new inversion method. The first step has been the validation of GBMS measurements of tropospheric opacity, which is a necessary tool in the calibration of any GBMS spectra. This was achieved by means of comparisons among correlative measurements of water vapor column content (or Precipitable Water Vapor, PWV) since, in the spectral region observed by GBMS, the tropospheric opacity is almost entirely due to water vapor absorption. In particular, I compared GBMS PWV measurements collected during the primary field campaign of the ECOWAR project (Bhawar et al., 2008) with simultaneous PWV observations obtained with Vaisala RS92k radiosondes, a Raman lidar, and an IR Fourier transform spectrometer. I found that GBMS PWV measurements are in good agreement with the other three data sets exhibiting a mean difference between observations of ~9%. After this initial validation, GBMS HNO3 retrievals have been compared to two sets of satellite data produced by the two NASA/JPL Microwave Limb Sounder (MLS) experiments (aboard the Upper Atmosphere Research Satellite (UARS) from 1991 to 1999, and on the Earth Observing System (EOS) Aura mission from 2004 to date). This part of my thesis is inserted in GOZCARDS (Global Ozone Chemistry and Related Trace gas Data Records for the Stratosphere), a multi-year project, aimed at developing a long-term data record of stratospheric constituents relevant to the issues of ozone decline and expected recovery. This data record will be based mainly on satellite-derived measurements but ground-based observations will be pivotal for assessing offsets between satellite data sets. Since the GBMS has been operated for more than 15 years, its nitric acid data record offers a unique opportunity for cross-calibrating HNO3 measurements from the two MLS experiments. I compare GBMS HNO3 measurements obtained from the Italian Alpine station of Testa Grigia (45.9° N, 7.7° E, elev. 3500 m), during the period February 2004 - March 2007, and from Thule Air Base, Greenland (76.5°N 68.8°W), during polar winter 2008/09, and Aura MLS observations. A similar intercomparison is made between UARS MLS HNO3 measurements with those carried out from the GBMS at South Pole, Antarctica (90°S), during the most part of 1993 and 1995. I assess systematic differences between GBMS and both UARS and Aura HNO3 data sets at seven potential temperature levels. Results show that, except for measurements carried out at Thule, ground based and satellite data sets are consistent within the errors, at all potential temperature levels.
Resumo:
A rapid, highly selective and simple method has been developed for the quantitative determination of pyro-, tri- and orthophosphates. The method is based on the formation of a solid complex of bis(ethylenediamine)cobalt(III) species with pyrophosphate at pH 4.2-4.3, with triphosphate at pH 2.0-2.1 and with orthophosphate at pH 8.2-8.6. The proposed method for pyro- and triphosphates differs from the available method, which is based on the formation of an adduct with tris(ethylenediamine)cobalt(III) species. The complexes have the composition [Co(en)(2)HP2O7]4H(2)O and [Co(en)(2)H2P3O10]2H(2)O, respectively. The precipitation is instantaneous and quantitative under the recommended optimum conditions giving 99.5% gravimetric yield in both cases. There is no interferences from orthophosphate, trimetaphosphate and pyrophosphate species in the triphosphate estimation up to 5% of each component. The efficacy of the method has been established by determining pyrophosphate and triphosphate contents in various matrices. In the case of orthophosphate, the proposed method differs from the available methods such as ammonium phosphomolybdate, vanadophosphomolybdate and quinoline phosphomolybdate, which are based on the formation of a precipitate, followed by either titrimetry or gravimetry. The precipitation is instantaneous and the method is simple. Under the recommended pH and other reaction conditions, gravimetric yields of 99.6-100% are obtainable. The method is applicable to orthophosphoric acid and a variety of phosphate salts.
Resumo:
It is essential to accurately estimate the working set size (WSS) of an application for various optimizations such as to partition cache among virtual machines or reduce leakage power dissipated in an over-allocated cache by switching it OFF. However, the state-of-the-art heuristics such as average memory access latency (AMAL) or cache miss ratio (CMR) are poorly correlated to the WSS of an application due to 1) over-sized caches and 2) their dispersed nature. Past studies focus on estimating WSS of an application executing on a uniprocessor platform. Estimating the same for a chip multiprocessor (CMP) with a large dispersed cache is challenging due to the presence of concurrently executing threads/processes. Hence, we propose a scalable, highly accurate method to estimate WSS of an application. We call this method ``tagged WSS (TWSS)'' estimation method. We demonstrate the use of TWSS to switch-OFF the over-allocated cache ways in Static and Dynamic NonUniform Cache Architectures (SNUCA, DNUCA) on a tiled CMP. In our implementation of adaptable way SNUCA and DNUCA caches, decision of altering associativity is taken by each L2 controller. Hence, this approach scales better with the number of cores present on a CMP. It gives overall (geometric mean) 26% and 19% higher energy-delay product savings compared to AMAL and CMR heuristics on SNUCA, respectively.
Resumo:
In this paper, a Decimative Spectral estimation method based on Eigenanalysis and SVD (Singular Value Decomposition) is presented and applied to speech signals in order to estimate Formant/Bandwidth values. The underlying model decomposes a signal into complex damped sinusoids. The algorithm is applied not only on speech samples but on a small amount of the autocorrelation coefficients of a speech frame as well, for finer estimation. Correct estimation of Formant/Bandwidth values depend on the model order thus, the requested number of poles. Overall, experimentation results indicate that the proposed methodology successfully estimates formant trajectories and their respective bandwidths.
Resumo:
This paper investigates the center selection of multi-output radial basis function (RBF) networks, and a multi-output fast recursive algorithm (MFRA) is proposed. This method can not only reveal the significance of each candidate center based on the reduction in the trace of the error covariance matrix, but also can estimate the network weights simultaneously using a back substitution approach. The main contribution is that the center selection procedure and the weight estimation are performed within a well-defined regression context, leading to a significantly reduced computational complexity. The efficiency of the algorithm is confirmed by a computational complexity analysis, and simulation results demonstrate its effectiveness. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Arsenic (As) contamination of rice plants can result in high total As concentrations (t-As) in cooked rice, especially if As-contaminated water is used for cooking. This study examines two variables: (1) the cooking method (water volume and inclusion of a washing step); and (2) the rice type (atab and boiled). Cooking water and raw atab and boiled rice contained 40 g As l-1 and 185 and 315 g As kg-1, respectively. In general, all cooking methods increased t-As from the levels in raw rice; however, raw boiled rice decreased its t-As by 12.7% when cooked by the traditional method, but increased by 15.9% or 23.5% when cooked by the intermediate or contemporary methods, respectively. Based on the best possible scenario (the traditional cooking method leading to the lowest level of contamination, and the atab rice type with the lowest As content), t-As daily intake was estimated to be 328 g, which was twice the tolerable daily intake of 150 g.
Resumo:
A method has been developed to estimate Aerosol Optical Depth (AOD), Fine Mode Fraction (FMF) and Single Scattering Albedo (SSA) over land surfaces using simulated Sentinel-3 data. The method uses inversion of a coupled surface/atmosphere radiative transfer model, and includes a general physical model of angular surface reflectance. An iterative process is used to determine the optimum value of the aerosol properties providing the best fit of the corrected reflectance values for a number of view angles and wavelengths with those provided by the physical model. A method of estimating AOD using only angular retrieval has previously been demonstrated on data from the ENVISAT and PROBA-1 satellite instruments, and is extended here to the synergistic spectral and angular sampling of Sentinel-3 and the additional aerosol properties. The method is tested using hyperspectral, multi-angle Compact High Resolution Imaging Spectrometer (CHRIS) images. The values obtained from these CHRIS observations are validated using ground based sun-photometer measurements. Results from 22 image sets using the synergistic retrieval and improved aerosol models show an RMSE of 0.06 in AOD, reduced to 0.03 over vegetated targets.
Resumo:
We develop a method to derive aerosol properties over land surfaces using combined spectral and angular information, such as available from ESA Sentinel-3 mission, to be launched in 2015. A method of estimating aerosol optical depth (AOD) using only angular retrieval has previously been demonstrated on data from the ENVISAT and PROBA-1 satellite instruments, and is extended here to the synergistic spectral and angular sampling of Sentinel-3. The method aims to improve the estimation of AOD, and to explore the estimation of fine mode fraction (FMF) and single scattering albedo (SSA) over land surfaces by inversion of a coupled surface/atmosphere radiative transfer model. The surface model includes a general physical model of angular and spectral surface reflectance. An iterative process is used to determine the optimum value of the aerosol properties providing the best fit of the corrected reflectance values to the physical model. The method is tested using hyperspectral, multi-angle Compact High Resolution Imaging Spectrometer (CHRIS) images. The values obtained from these CHRIS observations are validated using ground-based sun photometer measurements. Results from 22 image sets using the synergistic retrieval and improved aerosol models show an RMSE of 0.06 in AOD, reduced to 0.03 over vegetated targets.
Resumo:
The major contribution of this paper relates to the practical advantages of combining Ground Control Points (GCPs), Ground Control Lines (GCLs) and orbital data to estimate the exterior orientation parameters of images collected by CBERS-2B (China-Brazil Earth Resources Satellite) HRC (High-resolution Camera) and CCD (High-resolution CCD Camera) sensors. Although the CBERS-2B is no longer operational, its images are still being used in Brazil, and the next generations of the CBERS satellite will have sensors with similar technical features, which motivates the study presented in this paper. The mathematical models that relate the object and image spaces are based on collinearity (for points) and coplanarity (for lines) conditions. These models were created in an in-house developed software package called TMS (Triangulation with Multiple Sensors) with multi-feature control (GCPs and GCLs). Experiments on a block of four CBERS-2B HRC images and on one CBERS-2B CCD image were performed using both models. It was observed that the combination of GCPs and GCLs provided better bundle block adjustment results than conventional bundle adjustment using only GCPs. The results also demonstrate the advantages of using primarily orbital data when the number of control entities is reduced. © 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).
Resumo:
In warm and dry climates, the use of porous systems should be required in order to allow a better leaf distribution inside the plant, causing more space in the clusters area and enhancing determined physiological processes so in the leaf (photosynthesis, v entilation, transpiration) as in berry (growth and maturation). Plant geometry indexes, yield and must composition have been studied in three different systems: sprawl with 12 shoots/m (S1); sprawl system with 18 shoots/m (S2) and vertical positioned syste m or VSP with 12 shoots/m (VSP1). Total leaf area increases as the crop load does, whoever surface area depends on to two factors: crop load and the training system (VSP vs. sprawl), which can provide differences in leaf exposure efficiencies. The main objective of this study was to validate digital photography measurements used to compare porosity differences among treatments and, as they affect plant microclimate and, therefore, yield and berry quality. Also, all previous studied indexes (LAI, SA, SFEr) tended to overestimate the relationship between exposed leaf surface and porosity of each treatment, but the use of digital method proved to be an effective tool in order to assess canopy porosity. Results showed that not positioned and free systems (sprawl) scored between 25- 50% more porosity in the clusters area than the fixed vertical system (VSP), which resulted in a better plant microclimate for test conditions, mainly by improving the exposure of internal clusters and internal canopy ventilation. On the other hand, higher crop load treatment (S2) showed a real increase in yield (16%) without any relevant change into must composition, even improving total anthocyanin content into berry during ripening
Resumo:
In warm and dry climates, the use of porous systems should be required in order to allow a better leaf distribution inside the plant, causing more space in the clusters area and enhancing determined physiological processes so in the leaf (photosynthesis, ventilation, transpiration) as in berry (growth and maturation). Plant geometry indexes, yield and must composition have been studied in three different systems: sprawl with 12 shoots/m (S1); sprawl system with 18 shoots/m (S2) and vertical positioned system or VSP with 12 shoots/m (VSP1). Total leaf area increases as the crop load does, whoever surface area depends on to two factors: crop load and the training system (VSP vs . sprawl), which can provide differences in leaf exposure efficiencies. The main objective of this study was to validate digital photography measurements used to compare porosity differences among treatments and, as they affect plant microclimate and, therefore, yield and berry quality. Also, all previous studied indexes (LAI, SA, SFEr) tended to overestimate the relationship between exposed leaf surface and porosity of each treatment, but the use of digital method proved to be an effective tool in order to assess canopy porosity. Results showed that not positioned and free systems (sprawl) scored between 25 - 50% more porosity in the clusters area than the fixed vertical system (VSP), which resulted in a better plant microclimate for test conditions, mainly by improving the exposure of internal clusters and internal canopy ventilation. On the other hand, higher crop load treatment (S2) showed a real increase in yield (16%) without any relevant change into must composition, even improving total anthocyanin content into berry during ripening
Resumo:
The measurement of lifetime prevalence of depression in cross-sectional surveys is biased by recall problems. We estimated it indirectly for two countries using modelling, and quantified the underestimation in the empirical estimate for one. A microsimulation model was used to generate population-based epidemiological measures of depression. We fitted the model to 1-and 12-month prevalence data from the Netherlands Mental Health Survey and Incidence Study (NEMESIS) and the Australian Adult Mental Health and Wellbeing Survey. The lowest proportion of cases ever having an episode in their life is 30% of men and 40% of women, for both countries. This corresponds to a lifetime prevalence of 20 and 30%, respectively, in a cross-sectional setting (aged 15-65). The NEMESIS data were 38% lower than these estimates. We conclude that modelling enabled us to estimate lifetime prevalence of depression indirectly. This method is useful in the absence of direct measurement, but also showed that direct estimates are underestimated by recall bias and by the cross-sectional setting.