822 resultados para Multi-agents Systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Un système multi-agents est composé de plusieurs agents autonomes qui interagissent entre eux dans un environnement commun. Ce mémoire vise à démontrer l’utilisation d’un système multi-agents pour le développement d’un jeu vidéo. Tout d’abord, une justification du choix des concepts d’intelligence artificielle choisie est exposée. Par la suite, une approche pratique est utilisée en effectuant le développement d’un jeu vidéo. Pour ce faire, le jeu fut développé à partir d’un jeu vidéo mono-agent existant et mo- difié en système multi-agents afin de bien mettre en valeur les avantages d’un système multi-agents dans un jeu vidéo. Le développement de ce jeu a aussi démontré l’applica- tion d’autres concepts en intelligence artificielle comme la recherche de chemins et les arbres de décisions. Le jeu développé pour ce mémoire viens appuyer les conclusions des différentes recherches démontrant que l’utilisation d’un système multi-agents per- met de réaliser un comportement plus réaliste pour les joueurs non humains et bien plus compétitifs pour le joueur humain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intelligent agents are an advanced technology utilized in Web Intelligence. When searching information from a distributed Web environment, information is retrieved by multi-agents on the client site and fused on the broker site. The current information fusion techniques rely on cooperation of agents to provide statistics. Such techniques are computationally expensive and unrealistic in the real world. In this paper, we introduce a model that uses a world ontology constructed from the Dewey Decimal Classification to acquire user profiles. By search using specific and exhaustive user profiles, information fusion techniques no longer rely on the statistics provided by agents. The model has been successfully evaluated using the large INEX data set simulating the distributed Web environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a low-bandwidth multi-robot communication system designed to serve as a backup communication channel in the event a robot suffers a network device fault. While much research has been performed in the area of distributing network communication across multiple robots within a system, individual robots are still susceptible to hardware failure. In the past, such robots would simply be removed from service, and their tasks re-allocated to other members. However, there are times when a faulty robot might be crucial to a mission, or be able to contribute in a less communication intensive area. By allowing robots to encode and decode messages into unique sequences of DTMF symbols, called words, our system is able to facilitate continued low-bandwidth communication between robots without access to network communication. Our results have shown that the system is capable of permitting robots to negotiate task initiation and termination, and is flexible enough to permit a pair of robots to perform a simple turn taking task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In contrast to single robotic agent, multi-robot systems are highly dependent on reliable communication. Robots have to synchronize tasks or to share poses and sensor readings with other agents, especially for co-operative mapping task where local sensor readings are incorporated into a global map. The drawback of existing communication frameworks is that most are based on a central component which has to be constantly within reach. Additionally, they do not prevent data loss between robots if a failure occurs in the communication link. During a distributed mapping task, loss of data is critical because it will corrupt the global map. In this work, we propose a cloud-based publish/subscribe mechanism which enables reliable communication between agents during a cooperative mission using the Data Distribution Service (DDS) as a transport layer. The usability of our approach is verified by several experiments taking into account complete temporary communication loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the fourth stage of an evolving study to develop a systems model for embedding education for sustainability (EfS) into pre-service teacher education. The fourth stage trialled the extension of the model to a comprehensive state-wide systems approach involving representatives from all eight Queensland teacher education institutions and other key policy agencies and professional associations. Support for trialling the model included regular meetings among the participating representatives and an implementation guide. This paper describes the first three stages of developing and trialling the model before presenting the case study and action research methods employed, four key lessons learned from the project, and the implications of the major outcomes for teacher education policies and practices. The Queensland-wide multi-site case study revealed processes and strategies that can enable institutional change agents to engage productively in building capacity for embedding EfS at the individual, institutional and state levels in pre-service teacher education. Collectively, the project components provide a system-wide framework that offers strategies, examples, insights and resources that can serve as a model for other states and/or territories wishing to implement EfS in a systematic and coherent fashion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a strategy for controlling a group of agents to achieve positional consensus is presented. The proposed technique is based on the constraint that every agents must be given the same control input through a broadcast communication mechanism. Although the control command is computed using state information in a global framework, the control input is implemented by the agents in a local coordinate frame. We propose a novel linear programming formulation that is computationally less intensive than earlier proposed methods. Moreover, we introduce a random perturbation input in the control command that helps us to achieve perfect consensus even for a large number of agents, which was not possible with the existing strategy in the literature. Moreover, we extend the method to achieve positional consensus at a pre-specified location. The effectiveness of the approach is illustrated through simulation results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we analyze a deploy and search strategy for multi-agent systems. Mobile agents equipped with sensors carry out search operation in the search space. The lack of information about the search space is modeled as an uncertainty density distribution over the space, and is assumed to be known to the agents a priori. In each step, the agents deploy themselves in an optimal way so as to maximize per step reduction in the uncertainty density. We analyze the proposed strategy for convergence and spatial distributedness. The control law moving the agents has been analyzed for stability and convergence using LaSalle's invariance principle, and for spatial distributedness under a few realistic constraints on the control input such as constant speed, limit on maximum speed, and also sensor range limits. The simulation experiments show that the strategy successfully reduces the average uncertainty density below the required level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we develop a Linear Programming (LP) based decentralized algorithm for a group of multiple autonomous agents to achieve positional consensus. Each agent is capable of exchanging information about its position and orientation with other agents within their sensing region. The method is computationally feasible and easy to implement. Analytical results are presented. The effectiveness of the approach is illustrated with simulation results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dissertation studies the general area of complex networked systems that consist of interconnected and active heterogeneous components and usually operate in uncertain environments and with incomplete information. Problems associated with those systems are typically large-scale and computationally intractable, yet they are also very well-structured and have features that can be exploited by appropriate modeling and computational methods. The goal of this thesis is to develop foundational theories and tools to exploit those structures that can lead to computationally-efficient and distributed solutions, and apply them to improve systems operations and architecture.

Specifically, the thesis focuses on two concrete areas. The first one is to design distributed rules to manage distributed energy resources in the power network. The power network is undergoing a fundamental transformation. The future smart grid, especially on the distribution system, will be a large-scale network of distributed energy resources (DERs), each introducing random and rapid fluctuations in power supply, demand, voltage and frequency. These DERs provide a tremendous opportunity for sustainability, efficiency, and power reliability. However, there are daunting technical challenges in managing these DERs and optimizing their operation. The focus of this dissertation is to develop scalable, distributed, and real-time control and optimization to achieve system-wide efficiency, reliability, and robustness for the future power grid. In particular, we will present how to explore the power network structure to design efficient and distributed market and algorithms for the energy management. We will also show how to connect the algorithms with physical dynamics and existing control mechanisms for real-time control in power networks.

The second focus is to develop distributed optimization rules for general multi-agent engineering systems. A central goal in multiagent systems is to design local control laws for the individual agents to ensure that the emergent global behavior is desirable with respect to the given system level objective. Ideally, a system designer seeks to satisfy this goal while conditioning each agent’s control on the least amount of information possible. Our work focused on achieving this goal using the framework of game theory. In particular, we derived a systematic methodology for designing local agent objective functions that guarantees (i) an equivalence between the resulting game-theoretic equilibria and the system level design objective and (ii) that the resulting game possesses an inherent structure that can be exploited for distributed learning, e.g., potential games. The control design can then be completed by applying any distributed learning algorithm that guarantees convergence to the game-theoretic equilibrium. One main advantage of this game theoretic approach is that it provides a hierarchical decomposition between the decomposition of the systemic objective (game design) and the specific local decision rules (distributed learning algorithms). This decomposition provides the system designer with tremendous flexibility to meet the design objectives and constraints inherent in a broad class of multiagent systems. Furthermore, in many settings the resulting controllers will be inherently robust to a host of uncertainties including asynchronous clock rates, delays in information, and component failures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-agent systems have become increasingly mature, but their appearance does not make the traditional OO approach obsolete. On the contrary, OO methodologies can benefit from the principles and tools designed for agent systems. The Agent-Rule-Class (ARC) framework is proposed as an approach that builds agents upon traditional OO system components and makes use of business rules to dictate agent behaviour with the aid of OO components. By modelling agent knowledge in business rules, the proposed paradigm provides a straightforward means to develop agent-oriented systems based on the existing object-oriented systems and offers features that are otherwise difficult to achieve in the original OO systems. The main outcome of using ARC is the achievement of adaptivity. The framework is supported by a tool that ensures agents implement up-to-date requirements from business people, reflecting desired current behaviour, without the need for frequent system rebuilds. ARC is illustrated with a rail track example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional experimental economics methods often consume enormous resources of qualified human participants, and the inconsistence of a participant’s decisions among repeated trials prevents investigation from sensitivity analyses. The problem can be solved if computer agents are capable of generating similar behaviors as the given participants in experiments. An experimental economics based analysis method is presented to extract deep information from questionnaire data and emulate any number of participants. Taking the customers’ willingness to purchase electric vehicles (EVs) as an example, multi-layer correlation information is extracted from a limited number of questionnaires. Multi-agents mimicking the inquired potential customers are modelled through matching the probabilistic distributions of their willingness embedded in the questionnaires. The authenticity of both the model and the algorithm is validated by comparing the agent-based Monte Carlo simulation results with the questionnaire-based deduction results. With the aid of agent models, the effects of minority agents with specific preferences on the results are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a multi-agent system for real-time operation of simulated microgrid using the Smart-Grid Test Bed at Washington State University. The multi-agent system (MAS) was developed in JADE (Java Agent DEvelopment Framework) which is a Foundation for Intelligent Physical Agents (FIPA) compliant open source multi-agent platform. The proposed operational strategy is mainly focused on using an appropriate energy management and control strategies to improve the operation of an islanded microgrid, formed by photovoltaic (PV) solar energy, batteries and resistive and rotating machines loads. The focus is on resource management and to avoid impact on loads from abrupt variations or interruption that changes the operating conditions. The management and control of the PV system is performed in JADE, while the microgrid model is simulated in RSCAD/RTDS (Real-Time Digital Simulator). Finally, the outcome of simulation studies demonstrated the feasibility of the proposed multi-agent approach for real-time operation of a microgrid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis deals with distributed control strategies for cooperative control of multi-robot systems. Specifically, distributed coordination strategies are presented for groups of mobile robots. The formation control problem is initially solved exploiting artificial potential fields. The purpose of the presented formation control algorithm is to drive a group of mobile robots to create a completely arbitrarily shaped formation. Robots are initially controlled to create a regular polygon formation. A bijective coordinate transformation is then exploited to extend the scope of this strategy, to obtain arbitrarily shaped formations. For this purpose, artificial potential fields are specifically designed, and robots are driven to follow their negative gradient. Artificial potential fields are then subsequently exploited to solve the coordinated path tracking problem, thus making the robots autonomously spread along predefined paths, and move along them in a coordinated way. Formation control problem is then solved exploiting a consensus based approach. Specifically, weighted graphs are used both to define the desired formation, and to implement collision avoidance. As expected for consensus based algorithms, this control strategy is experimentally shown to be robust to the presence of communication delays. The global connectivity maintenance issue is then considered. Specifically, an estimation procedure is introduced to allow each agent to compute its own estimate of the algebraic connectivity of the communication graph, in a distributed manner. This estimate is then exploited to develop a gradient based control strategy that ensures that the communication graph remains connected, as the system evolves. The proposed control strategy is developed initially for single-integrator kinematic agents, and is then extended to Lagrangian dynamical systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systems Biology is an innovative way of doing biology recently raised in bio-informatics contexts, characterised by the study of biological systems as complex systems with a strong focus on the system level and on the interaction dimension. In other words, the objective is to understand biological systems as a whole, putting on the foreground not only the study of the individual parts as standalone parts, but also of their interaction and of the global properties that emerge at the system level by means of the interaction among the parts. This thesis focuses on the adoption of multi-agent systems (MAS) as a suitable paradigm for Systems Biology, for developing models and simulation of complex biological systems. Multi-agent system have been recently introduced in informatics context as a suitabe paradigm for modelling and engineering complex systems. Roughly speaking, a MAS can be conceived as a set of autonomous and interacting entities, called agents, situated in some kind of nvironment, where they fruitfully interact and coordinate so as to obtain a coherent global system behaviour. The claim of this work is that the general properties of MAS make them an effective approach for modelling and building simulations of complex biological systems, following the methodological principles identified by Systems Biology. In particular, the thesis focuses on cell populations as biological systems. In order to support the claim, the thesis introduces and describes (i) a MAS-based model conceived for modelling the dynamics of systems of cells interacting inside cell environment called niches. (ii) a computational tool, developed for implementing the models and executing the simulations. The tool is meant to work as a kind of virtual laboratory, on top of which kinds of virtual experiments can be performed, characterised by the definition and execution of specific models implemented as MASs, so as to support the validation, falsification and improvement of the models through the observation and analysis of the simulations. A hematopoietic stem cell system is taken as reference case study for formulating a specific model and executing virtual experiments.