858 resultados para Multi-agent systems and model-based systems engineering
Resumo:
Systems Biology is an innovative way of doing biology recently raised in bio-informatics contexts, characterised by the study of biological systems as complex systems with a strong focus on the system level and on the interaction dimension. In other words, the objective is to understand biological systems as a whole, putting on the foreground not only the study of the individual parts as standalone parts, but also of their interaction and of the global properties that emerge at the system level by means of the interaction among the parts. This thesis focuses on the adoption of multi-agent systems (MAS) as a suitable paradigm for Systems Biology, for developing models and simulation of complex biological systems. Multi-agent system have been recently introduced in informatics context as a suitabe paradigm for modelling and engineering complex systems. Roughly speaking, a MAS can be conceived as a set of autonomous and interacting entities, called agents, situated in some kind of nvironment, where they fruitfully interact and coordinate so as to obtain a coherent global system behaviour. The claim of this work is that the general properties of MAS make them an effective approach for modelling and building simulations of complex biological systems, following the methodological principles identified by Systems Biology. In particular, the thesis focuses on cell populations as biological systems. In order to support the claim, the thesis introduces and describes (i) a MAS-based model conceived for modelling the dynamics of systems of cells interacting inside cell environment called niches. (ii) a computational tool, developed for implementing the models and executing the simulations. The tool is meant to work as a kind of virtual laboratory, on top of which kinds of virtual experiments can be performed, characterised by the definition and execution of specific models implemented as MASs, so as to support the validation, falsification and improvement of the models through the observation and analysis of the simulations. A hematopoietic stem cell system is taken as reference case study for formulating a specific model and executing virtual experiments.
Resumo:
Robotics is a field that presents a large number of problems because it depends on a large number of disciplines, devices, technologies and tasks. Its expansion from perfectly controlled industrial environments toward open and dynamic environment presents a many new challenges, such as robots household robots or professional robots. To facilitate the rapid development of robotic systems, low cost, reusability of code, its medium and long term maintainability and robustness are required novel approaches to provide generic models and software systems who develop paradigms capable of solving these problems. For this purpose, in this paper we propose a model based on multi-agent systems inspired by the human nervous system able to transfer the control characteristics of the biological system and able to take advantage of the best properties of distributed software systems.
Resumo:
In the past two decades, multi-agent systems (MAS) have emerged as a new paradigm for conceptualizing large and complex distributed software systems. A multi-agent system view provides a natural abstraction for both the structure and the behavior of modern-day software systems. Although there were many conceptual frameworks for using multi-agent systems, there was no well established and widely accepted method for modeling multi-agent systems. This dissertation research addressed the representation and analysis of multi-agent systems based on model-oriented formal methods. The objective was to provide a systematic approach for studying MAS at an early stage of system development to ensure the quality of design. ^ Given that there was no well-defined formal model directly supporting agent-oriented modeling, this study was centered on three main topics: (1) adapting a well-known formal model, predicate transition nets (PrT nets), to support MAS modeling; (2) formulating a modeling methodology to ease the construction of formal MAS models; and (3) developing a technique to support machine analysis of formal MAS models using model checking technology. PrT nets were extended to include the notions of dynamic structure, agent communication and coordination to support agent-oriented modeling. An aspect-oriented technique was developed to address the modularity of agent models and compositionality of incremental analysis. A set of translation rules were defined to systematically translate formal MAS models to concrete models that can be verified through the model checker SPIN (Simple Promela Interpreter). ^ This dissertation presents the framework developed for modeling and analyzing MAS, including a well-defined process model based on nested PrT nets, and a comprehensive methodology to guide the construction and analysis of formal MAS models.^
Resumo:
This paper presents an agent-based simulator designed for analyzing agent market strategies based on a complete understanding of buyer and seller behaviours, preference models and pricing algorithms, considering user risk preferences. The system includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions. In the simulated market agents interact in several different ways and may joint together to form coalitions. In this paper we address multi-agent coalitions to analyse Distributed Generation in Electricity Markets
Resumo:
Decentralised co-operative multi-agent systems are computational systems where conflicts are frequent due to the nature of the represented knowledge. Negotiation methodologies, in this case argumentation based negotiation methodologies, were developed and applied to solve unforeseeable and, therefore, unavoidable conflicts. The supporting computational model is a distributed belief revision system where argumentation plays the decisive role of revision. The distributed belief revision system detects, isolates and solves, whenever possible, the identified conflicts. The detection and isolation of the conflicts is automatically performed by the distributed consistency mechanism and the resolution of the conflict, or belief revision, is achieved via argumentation. We propose and describe two argumentation protocols intended to solve different types of identified information conflicts: context dependent and context independent conflicts. While the protocol for context dependent conflicts generates new consensual alternatives, the latter chooses to adopt the soundest, strongest argument presented. The paper shows the suitability of using argumentation as a distributed decentralised belief revision protocol to solve unavoidable conflicts.
Resumo:
Agent-oriented software engineering and software product lines are two promising software engineering techniques. Recent research work has been exploring their integration, namely multi-agent systems product lines (MAS-PLs), to promote reuse and variability management in the context of complex software systems. However, current product derivation approaches do not provide specific mechanisms to deal with MAS-PLs. This is essential because they typically encompass several concerns (e.g., trust, coordination, transaction, state persistence) that are constructed on the basis of heterogeneous technologies (e.g., object-oriented frameworks and platforms). In this paper, we propose the use of multi-level models to support the configuration knowledge specification and automatic product derivation of MAS-PLs. Our approach provides an agent-specific architecture model that uses abstractions and instantiation rules that are relevant to this application domain. In order to evaluate the feasibility and effectiveness of the proposed approach, we have implemented it as an extension of an existing product derivation tool, called GenArch. The approach has also been evaluated through the automatic instantiation of two MAS-PLs, demonstrating its potential and benefits to product derivation and configuration knowledge specification.
Resumo:
Reasoning under uncertainty is a human capacity that in software system is necessary and often hidden. Argumentation theory and logic make explicit non-monotonic information in order to enable automatic forms of reasoning under uncertainty. In human organization Distributed Cognition and Activity Theory explain how artifacts are fundamental in all cognitive process. Then, in this thesis we search to understand the use of cognitive artifacts in an new argumentation framework for an agent-based artificial society.
Resumo:
Multi-agent systems are complex systems comprised of multiple intelligent agents that act either independently or in cooperation with one another. Agent-based modelling is a method for studying complex systems like economies, societies, ecologies etc. Due to their complexity, very often mathematical analysis is limited in its ability to analyse such systems. In this case, agent-based modelling offers a practical, constructive method of analysis. The objective of this book is to shed light on some emergent properties of multi-agent systems. The authors focus their investigation on the effect of knowledge exchange on the convergence of complex, multi-agent systems.
Resumo:
The paper presents a case study of geo-monitoring a region consisting in the capturing and encoding of human expertise into a knowledge-based system. As soon as the maps have been processed, the data patterns are detected using knowledge-based agents for the harvest prognosis.