834 resultados para Multi-Dimensional Bellman-Harris Process


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Марусия Н. Славчова-Божкова - В настоящата работа се обобщава една гранична теорема за докритичен многомерен разклоняващ се процес, зависещ от възрастта на частиците с два типа имиграция. Целта е да се обобщи аналогичен резултат в едномерния случай като се прилагат “coupling” метода, теория на възстановяването и регенериращи процеси.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last few years, Business Process Management (BPM) has achieved increasing popularity and dissemination. An analysis of the underlying assumptions of BPM shows that it pursues two apparently contradicting goals: on the one hand it aims at formalising work practices into business process models; on the other hand, it intends to confer flexibility to the organization - i.e. to maintain its ability to respond to new and unforeseen situations. This paper analyses the relationship between formalisation and flexibility in business process modelling by means of an empirical case study of a BPM project in an aircraft maintenance company. A qualitative approach is adopted based on the Actor-Network Theory. The paper offers two major contributions: (a) it illustrates the sociotechnical complexity involved in BPM initiatives; (b) it points towards a multidimensional understanding of the relation between formalization and flexibility in BPM projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hoy en día, con la evolución continua y rápida de las tecnologías de la información y los dispositivos de computación, se recogen y almacenan continuamente grandes volúmenes de datos en distintos dominios y a través de diversas aplicaciones del mundo real. La extracción de conocimiento útil de una cantidad tan enorme de datos no se puede realizar habitualmente de forma manual, y requiere el uso de técnicas adecuadas de aprendizaje automático y de minería de datos. La clasificación es una de las técnicas más importantes que ha sido aplicada con éxito a varias áreas. En general, la clasificación se compone de dos pasos principales: en primer lugar, aprender un modelo de clasificación o clasificador a partir de un conjunto de datos de entrenamiento, y en segundo lugar, clasificar las nuevas instancias de datos utilizando el clasificador aprendido. La clasificación es supervisada cuando todas las etiquetas están presentes en los datos de entrenamiento (es decir, datos completamente etiquetados), semi-supervisada cuando sólo algunas etiquetas son conocidas (es decir, datos parcialmente etiquetados), y no supervisada cuando todas las etiquetas están ausentes en los datos de entrenamiento (es decir, datos no etiquetados). Además, aparte de esta taxonomía, el problema de clasificación se puede categorizar en unidimensional o multidimensional en función del número de variables clase, una o más, respectivamente; o también puede ser categorizado en estacionario o cambiante con el tiempo en función de las características de los datos y de la tasa de cambio subyacente. A lo largo de esta tesis, tratamos el problema de clasificación desde tres perspectivas diferentes, a saber, clasificación supervisada multidimensional estacionaria, clasificación semisupervisada unidimensional cambiante con el tiempo, y clasificación supervisada multidimensional cambiante con el tiempo. Para llevar a cabo esta tarea, hemos usado básicamente los clasificadores Bayesianos como modelos. La primera contribución, dirigiéndose al problema de clasificación supervisada multidimensional estacionaria, se compone de dos nuevos métodos de aprendizaje de clasificadores Bayesianos multidimensionales a partir de datos estacionarios. Los métodos se proponen desde dos puntos de vista diferentes. El primer método, denominado CB-MBC, se basa en una estrategia de envoltura de selección de variables que es voraz y hacia delante, mientras que el segundo, denominado MB-MBC, es una estrategia de filtrado de variables con una aproximación basada en restricciones y en el manto de Markov. Ambos métodos han sido aplicados a dos problemas reales importantes, a saber, la predicción de los inhibidores de la transcriptasa inversa y de la proteasa para el problema de infección por el virus de la inmunodeficiencia humana tipo 1 (HIV-1), y la predicción del European Quality of Life-5 Dimensions (EQ-5D) a partir de los cuestionarios de la enfermedad de Parkinson con 39 ítems (PDQ-39). El estudio experimental incluye comparaciones de CB-MBC y MB-MBC con los métodos del estado del arte de la clasificación multidimensional, así como con métodos comúnmente utilizados para resolver el problema de predicción de la enfermedad de Parkinson, a saber, la regresión logística multinomial, mínimos cuadrados ordinarios, y mínimas desviaciones absolutas censuradas. En ambas aplicaciones, los resultados han sido prometedores con respecto a la precisión de la clasificación, así como en relación al análisis de las estructuras gráficas que identifican interacciones conocidas y novedosas entre las variables. La segunda contribución, referida al problema de clasificación semi-supervisada unidimensional cambiante con el tiempo, consiste en un método nuevo (CPL-DS) para clasificar flujos de datos parcialmente etiquetados. Los flujos de datos difieren de los conjuntos de datos estacionarios en su proceso de generación muy rápido y en su aspecto de cambio de concepto. Es decir, los conceptos aprendidos y/o la distribución subyacente están probablemente cambiando y evolucionando en el tiempo, lo que hace que el modelo de clasificación actual sea obsoleto y deba ser actualizado. CPL-DS utiliza la divergencia de Kullback-Leibler y el método de bootstrapping para cuantificar y detectar tres tipos posibles de cambio: en las predictoras, en la a posteriori de la clase o en ambas. Después, si se detecta cualquier cambio, un nuevo modelo de clasificación se aprende usando el algoritmo EM; si no, el modelo de clasificación actual se mantiene sin modificaciones. CPL-DS es general, ya que puede ser aplicado a varios modelos de clasificación. Usando dos modelos diferentes, el clasificador naive Bayes y la regresión logística, CPL-DS se ha probado con flujos de datos sintéticos y también se ha aplicado al problema real de la detección de código malware, en el cual los nuevos ficheros recibidos deben ser continuamente clasificados en malware o goodware. Los resultados experimentales muestran que nuestro método es efectivo para la detección de diferentes tipos de cambio a partir de los flujos de datos parcialmente etiquetados y también tiene una buena precisión de la clasificación. Finalmente, la tercera contribución, sobre el problema de clasificación supervisada multidimensional cambiante con el tiempo, consiste en dos métodos adaptativos, a saber, Locally Adpative-MB-MBC (LA-MB-MBC) y Globally Adpative-MB-MBC (GA-MB-MBC). Ambos métodos monitorizan el cambio de concepto a lo largo del tiempo utilizando la log-verosimilitud media como métrica y el test de Page-Hinkley. Luego, si se detecta un cambio de concepto, LA-MB-MBC adapta el actual clasificador Bayesiano multidimensional localmente alrededor de cada nodo cambiado, mientras que GA-MB-MBC aprende un nuevo clasificador Bayesiano multidimensional. El estudio experimental realizado usando flujos de datos sintéticos multidimensionales indica los méritos de los métodos adaptativos propuestos. ABSTRACT Nowadays, with the ongoing and rapid evolution of information technology and computing devices, large volumes of data are continuously collected and stored in different domains and through various real-world applications. Extracting useful knowledge from such a huge amount of data usually cannot be performed manually, and requires the use of adequate machine learning and data mining techniques. Classification is one of the most important techniques that has been successfully applied to several areas. Roughly speaking, classification consists of two main steps: first, learn a classification model or classifier from an available training data, and secondly, classify the new incoming unseen data instances using the learned classifier. Classification is supervised when the whole class values are present in the training data (i.e., fully labeled data), semi-supervised when only some class values are known (i.e., partially labeled data), and unsupervised when the whole class values are missing in the training data (i.e., unlabeled data). In addition, besides this taxonomy, the classification problem can be categorized into uni-dimensional or multi-dimensional depending on the number of class variables, one or more, respectively; or can be also categorized into stationary or streaming depending on the characteristics of the data and the rate of change underlying it. Through this thesis, we deal with the classification problem under three different settings, namely, supervised multi-dimensional stationary classification, semi-supervised unidimensional streaming classification, and supervised multi-dimensional streaming classification. To accomplish this task, we basically used Bayesian network classifiers as models. The first contribution, addressing the supervised multi-dimensional stationary classification problem, consists of two new methods for learning multi-dimensional Bayesian network classifiers from stationary data. They are proposed from two different points of view. The first method, named CB-MBC, is based on a wrapper greedy forward selection approach, while the second one, named MB-MBC, is a filter constraint-based approach based on Markov blankets. Both methods are applied to two important real-world problems, namely, the prediction of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors, and the prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item Parkinson’s Disease Questionnaire (PDQ-39). The experimental study includes comparisons of CB-MBC and MB-MBC against state-of-the-art multi-dimensional classification methods, as well as against commonly used methods for solving the Parkinson’s disease prediction problem, namely, multinomial logistic regression, ordinary least squares, and censored least absolute deviations. For both considered case studies, results are promising in terms of classification accuracy as well as regarding the analysis of the learned MBC graphical structures identifying known and novel interactions among variables. The second contribution, addressing the semi-supervised uni-dimensional streaming classification problem, consists of a novel method (CPL-DS) for classifying partially labeled data streams. Data streams differ from the stationary data sets by their highly rapid generation process and their concept-drifting aspect. That is, the learned concepts and/or the underlying distribution are likely changing and evolving over time, which makes the current classification model out-of-date requiring to be updated. CPL-DS uses the Kullback-Leibler divergence and bootstrapping method to quantify and detect three possible kinds of drift: feature, conditional or dual. Then, if any occurs, a new classification model is learned using the expectation-maximization algorithm; otherwise, the current classification model is kept unchanged. CPL-DS is general as it can be applied to several classification models. Using two different models, namely, naive Bayes classifier and logistic regression, CPL-DS is tested with synthetic data streams and applied to the real-world problem of malware detection, where the new received files should be continuously classified into malware or goodware. Experimental results show that our approach is effective for detecting different kinds of drift from partially labeled data streams, as well as having a good classification performance. Finally, the third contribution, addressing the supervised multi-dimensional streaming classification problem, consists of two adaptive methods, namely, Locally Adaptive-MB-MBC (LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC). Both methods monitor the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a drift is detected, LA-MB-MBC adapts the current multi-dimensional Bayesian network classifier locally around each changed node, whereas GA-MB-MBC learns a new multi-dimensional Bayesian network classifier from scratch. Experimental study carried out using synthetic multi-dimensional data streams shows the merits of both proposed adaptive methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of data independence designates the techniques that allow data to be changed without affecting the applications that process it. The different structures of the information bases require corresponded tools for supporting data independence. A kind of information bases (the Multi-dimensional Numbered Information Spaces) are pointed in the paper. The data independence in such information bases is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 47B06, 47G30, 60G50, 60G52, 60G60.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Text summarization has been studied for over a half century, but traditional methods process texts empirically and neglect the fundamental characteristics and principles of language use and understanding. Automatic summarization is a desirable technique for processing big data. This reference summarizes previous text summarization approaches in a multi-dimensional category space, introduces a multi-dimensional methodology for research and development, unveils the basic characteristics and principles of language use and understanding, investigates some fundamental mechanisms of summarization, studies dimensions on representations, and proposes a multi-dimensional evaluation mechanism. Investigation extends to incorporating pictures into summary and to the summarization of videos, graphs and pictures, and converges to a general summarization method. Further, some basic behaviors of summarization are studied in the complex cyber-physical-social space. Finally, a creative summarization mechanism is proposed as an effort toward the creative summarization of things, which is an open process of interactions among physical objects, data, people, and systems in cyber-physical-social space through a multi-dimensional lens of semantic computing. The insights can inspire research and development of many computing areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To look at the characteristics of Postgraduate Hospital Educational Environment Measure (PHEEM) using data from the UK, Brazil, Chile and the Netherlands, and to examine the reliability and characteristics of PHEEM, especially how the three PHEEM subscales fitted with factors derived statistically from the data sets. Methods: Statistical analysis of PHEEM scores from 1563 sets of data, using reliability analysis, exploratory factor analysis and correlations of factors derived with the three defined PHEEM subscales. Results: PHEEM was very reliable with an overall Cronbach`s alpha of 0.928. Three factors were derived by exploratory factor analysis. Factor One correlated most strongly with the teaching subscale (R=0.802), Factor Two correlated most strongly with the role autonomy subscale (R=0.623) and Factor Three correlated most strongly with the social support subscale (R=0.538). Conclusions: PHEEM is a multi-dimensional instrument. Overall, it is very reliable. There is a good fit of the three defined subscales, derived by qualitative methods, with the three principal factors derived from the data by exploratory factor analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A software package that efficiently solves a comprehensive range of problems based on coupled complex nonlinear stochastic ODEs and PDEs is outlined. Its input and output syntax is formulated as a subset of XML, thus making a step towards a standard for specifying numerical simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to study the relationships between chromosomal DNA sequences of twenty species. We propose a methodology combining DNA-based word frequency histograms, correlation methods, and an MDS technique to visualize structural information underlying chromosomes (CRs) and species. Four statistical measures are tested (Minkowski, Cosine, Pearson product-moment, and Kendall τ rank correlations) to analyze the information content of 421 nuclear CRs from twenty species. The proposed methodology is built on mathematical tools and allows the analysis and visualization of very large amounts of stream data, like DNA sequences, with almost no assumptions other than the predefined DNA “word length.” This methodology is able to produce comprehensible three-dimensional visualizations of CR clustering and related spatial and structural patterns. The results of the four test correlation scenarios show that the high-level information clusterings produced by the MDS tool are qualitatively similar, with small variations due to each correlation method characteristics, and that the clusterings are a consequence of the input data and not method’s artifacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The shifted Legendre orthogonal polynomials are used for the numerical solution of a new formulation for the multi-dimensional fractional optimal control problem (M-DFOCP) with a quadratic performance index. The fractional derivatives are described in the Caputo sense. The Lagrange multiplier method for the constrained extremum and the operational matrix of fractional integrals are used together with the help of the properties of the shifted Legendre orthonormal polynomials. The method reduces the M-DFOCP to a simpler problem that consists of solving a system of algebraic equations. For confirming the efficiency and accuracy of the proposed scheme, some test problems are implemented with their approximate solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NIPE WP 04/ 2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce and analyze two new semi-discrete numerical methods for the multi-dimensional Vlasov-Poisson system. The schemes are constructed by combing a discontinuous Galerkin approximation to the Vlasov equation together with a mixed finite element method for the Poisson problem. We show optimal error estimates in the case of smooth compactly supported initial data. We propose a scheme that preserves the total energy of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RÉSUMÉ : Le bullying est un type de comportement agressif qu'un élève (ou plusieurs) fait subir à un autre et qui se manifeste par des agressions verbales, physiques et/ou psychologiques. Les caractéristiques du bullying sont la répétitivité d'actions négatives sur le long terme et une relation de pouvoir asymétrique. Pour la victime, ce type de comportement peut avoir des conséquences graves telles qu'échec scolaire, dépression, troubles alimentaires, ou idées suicidaires. De plus, les auteurs de bullying commettent plus de comportements déviants au sein de l'école ou à l'extérieur de cette dernière. La mise en place d'actions ciblées auprès des auteurs de bullying pourrait donc non seulement prévenir une victimisation, mais aussi réduire les actes de délinquance en général. Hormis quelques études locales ou cantonales, aucune recherche nationale auprès d'adolescents n'existait dans le domaine. Ce travail propose de combler cette lacune afin d'obtenir une compréhension suffisante du phénomène qui permet de donner des pistes pour définir des mesures de prévention appropriées. Afin d'appréhender la problématique du bullying dans les écoles secondaires suisses, deux sondages de délinquance juvénile autoreportée ont été effectués. Le premier a eu lieu entre 2003 et 2005 dans le canton de Vaud auprès de plus de 4500 écoliers. Le second a été administré en 2006 dans toute la Suisse et environ 3600 jeunes y ont participé. Les jeunes ont répondu au sondage soit en classe (questionnaire papier) soit en salle d'informatique (questionnaire en ligne). Les jeunes ayant répondu avoir sérieusement harcelé un autre élève est d'environ 7% dans le canton de Vaud et de 4% dans l'échantillon national. Les analyses statistiques ont permis tout d'abord de sélectionner les variables les plus fortement liées au bullying. Les résultats montrent que les jeunes avec un bas niveau d'autocontrôle et ayant une attitude positive envers la violence sont plus susceptibles de commettre des actes de bullying. L'importance des variables environnementales a aussi été démontrée: plus le jeune est supervisé et encadré par des adultes, plus les autorités (école, voisinage) jouent leur rôle de contrôle social en faisant respecter les règles et en intervenant de manière impartiale, moins le jeune risque de commettre des actes de bullying. De plus, l'utilisation d'analyses multiniveaux a permis de montrer l'existence d'effets de l'école sur le bullying. En particulier, le taux de bullying dans une école donnée augmente lorsque les avis des jeunes divergent par rapport à leur perception du climat scolaire. Un autre constat que l'on peut mettre en évidence est que la réaction des enseignants lors de bagarres a une influence différente sur le taux de bullying en fonction de l'établissement scolaire. ABSTRACT : Bullying is the intentional, repetitive or persistent hurting of one pupil by another (or several), where the relationship involves an imbalance of power. Bullying is a type of aggressive behaviour and the act can be verbal, physical and/or psychological. The consequences on the victims are serious: school failure, depressive symptomatology, eating disorders, or suicidal ideation. Moreover, the authors of bullying display more delinquent behaviour within or outside the school. Thus, preventive programmes targeting bullying could not only prevent victimisation, but also reduce delinquency in general. Very little data concerning bullying had been collected in Switzerland and, except some local or cantonal studies, no national research among teenagers existed in the field. This work intends to fill the gap in order to provide sufficient understanding of the phenomenon and to suggest some tracks for defining appropriate measures of prevention. In order to understand the problems of bullying in Swiss secondary schools better, two surveys of self-reported juvenile delinquency were carried out. The first one took place between 2003 and 2005 in the canton Vaud among more than 4500 pupils, the second in 2006 across Switzerland with about 3600 youths taking part. The pupils answered to the survey either in the classroom (paper questionnaire) or in the computer room (online questionnaire). The youths that answered having seriously bullied another pupil are about 7% in canton Vaud and 4% in the national sample. Statistical analyses have selected the variables most strongly related to bullying. The results show that the youths with a low level of self-control and adopting a positive attitude towards violence are more likely to bully others. The importance of the environmental variables was also shown: the more that youth is supervised and monitored by adults, and the more the authorities (school, neighbourhood) play their role of social control by making the rules be respected through intervening in an impartial way, the less the youth bully. Moreover, the use of multilevel analyses permitted to show the existence of effects of the school on bullying. In particular, the rate of bullying in a given school increases when there is a wide variation among students of the same school in their perception of their school climate. Another important aspect concerns teachers' reactions when pupils fight: this variable does not influence the bullying rate to the same extent, and depends on the school.