995 resultados para Multi Touch


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many creative and technical areas, professionals make use of paper sketches for developing and expressing concepts and models. Paper offers an almost constraint free environment where they have as much freedom to express themselves as they need. However, paper does have some disadvantages, such as size and not being able to manipulate the content (other than remove it or scratch it), which can be overcome by creating systems that can offer the same freedom people have from paper but none of the disadvantages and limitations. Only in recent years has the technology become massively available that allows doing precisely that, with the development in touch‐sensitive screens that also have the ability to interact with a stylus. In this project a prototype was created with the objective of finding a set of the most useful and usable interactions, which are composed of combinations of multitouch and pen. The project selected Computer Aided Software Engineering (CASE) tools as its application domain, because it addresses a solid and well‐defined discipline with still sufficient room for new developments. This was the result from the area research conducted to find an application domain, which involved analyzing sketching tools from several possible areas and domains. User studies were conducted using Model Driven Inquiry (MDI) to have a better understanding of the human sketch creation activities and concepts devised. Then the prototype was implemented, through which it was possible to execute user evaluations of the interaction concepts created. Results validated most interactions, in the face of limited testing only being possible at the time. Users had more problems using the pen, however handwriting and ink recognition were very effective, and users quickly learned the manipulations and gestures from the Natural User Interface (NUI).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis argues on the possibility of supporting deictic gestures through handheld multi-touch devices in remote presentation scenarios. In [1], Clark distinguishes indicative techniques of placing-for and directing-to, where placing-for refers to placing a referent into the addressee’s attention, and directing-to refers to directing the addressee’s attention towards a referent. Keynote, PowerPoint, FuzeMeeting and others support placing-for efficiently with slide transitions, and animations, but support limited to none directing-to. The traditional “pointing feature” present in some presentation tools comes as a virtual laser pointer or mouse cursor. [12, 13] have shown that the mouse cursor and laser pointer offer very little informational expressiveness and do not do justice to human communicative gestures. In this project, a prototype application was implemented for the iPad in order to explore, develop, and test the concept of pointing in remote presentations. The prototype offers visualizing and navigating the slides as well as “pointing” and zooming. To further investigate the problem and possible solutions, a theoretical framework was designed representing the relationships between the presenter’s intention and gesture and the resulting visual effect (cursor) that enables the audience members to interpret the meaning of the effect and the presenter’s intention. Two studies were performed to investigate people’s appreciation of different ways of presenting remotely. An initial qualitative study was performed at The Hague, followed by an online quantitative user experiment. The results indicate that subjects found pointing to be helpful in understanding and concentrating, while the detached video feed of the presenter was considered to be distracting. The positive qualities of having the video feed were the emotion and social presence that it adds to the presentations. For a number of subjects, pointing displayed some of the same social and personal qualities [2] that video affords, while less intensified. The combination of pointing and video proved to be successful with 10-out-of-19 subjects scoring it the highest while pointing example came at a close 8-out-of-19. Video was the least preferred with only one subject preferring it. We suggest that the research performed here could provide a basis for future research and possibly be applied in a variety of distributed collaborative settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the introduction of new input devices, such as multi-touch surface displays, the Nintendo WiiMote, the Microsoft Kinect, and the Leap Motion sensor, among others, the field of Human-Computer Interaction (HCI) finds itself at an important crossroads that requires solving new challenges. Given the amount of three-dimensional (3D) data available today, 3D navigation plays an important role in 3D User Interfaces (3DUI). This dissertation deals with multi-touch, 3D navigation, and how users can explore 3D virtual worlds using a multi-touch, non-stereo, desktop display. ^ The contributions of this dissertation include a feature-extraction algorithm for multi-touch displays (FETOUCH), a multi-touch and gyroscope interaction technique (GyroTouch), a theoretical model for multi-touch interaction using high-level Petri Nets (PeNTa), an algorithm to resolve ambiguities in the multi-touch gesture classification process (Yield), a proposed technique for navigational experiments (FaNS), a proposed gesture (Hold-and-Roll), and an experiment prototype for 3D navigation (3DNav). The verification experiment for 3DNav was conducted with 30 human-subjects of both genders. The experiment used the 3DNav prototype to present a pseudo-universe, where each user was required to find five objects using the multi-touch display and five objects using a game controller (GamePad). For the multi-touch display, 3DNav used a commercial library called GestureWorks in conjunction with Yield to resolve the ambiguity posed by the multiplicity of gestures reported by the initial classification. The experiment compared both devices. The task completion time with multi-touch was slightly shorter, but the difference was not statistically significant. The design of experiment also included an equation that determined the level of video game console expertise of the subjects, which was used to break down users into two groups: casual users and experienced users. The study found that experienced gamers performed significantly faster with the GamePad than casual users. When looking at the groups separately, casual gamers performed significantly better using the multi-touch display, compared to the GamePad. Additional results are found in this dissertation.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the introduction of new input devices, such as multi-touch surface displays, the Nintendo WiiMote, the Microsoft Kinect, and the Leap Motion sensor, among others, the field of Human-Computer Interaction (HCI) finds itself at an important crossroads that requires solving new challenges. Given the amount of three-dimensional (3D) data available today, 3D navigation plays an important role in 3D User Interfaces (3DUI). This dissertation deals with multi-touch, 3D navigation, and how users can explore 3D virtual worlds using a multi-touch, non-stereo, desktop display. The contributions of this dissertation include a feature-extraction algorithm for multi-touch displays (FETOUCH), a multi-touch and gyroscope interaction technique (GyroTouch), a theoretical model for multi-touch interaction using high-level Petri Nets (PeNTa), an algorithm to resolve ambiguities in the multi-touch gesture classification process (Yield), a proposed technique for navigational experiments (FaNS), a proposed gesture (Hold-and-Roll), and an experiment prototype for 3D navigation (3DNav). The verification experiment for 3DNav was conducted with 30 human-subjects of both genders. The experiment used the 3DNav prototype to present a pseudo-universe, where each user was required to find five objects using the multi-touch display and five objects using a game controller (GamePad). For the multi-touch display, 3DNav used a commercial library called GestureWorks in conjunction with Yield to resolve the ambiguity posed by the multiplicity of gestures reported by the initial classification. The experiment compared both devices. The task completion time with multi-touch was slightly shorter, but the difference was not statistically significant. The design of experiment also included an equation that determined the level of video game console expertise of the subjects, which was used to break down users into two groups: casual users and experienced users. The study found that experienced gamers performed significantly faster with the GamePad than casual users. When looking at the groups separately, casual gamers performed significantly better using the multi-touch display, compared to the GamePad. Additional results are found in this dissertation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Having to carry input devices can be inconvenient when interacting with wall-sized, high-resolution tiled displays. Such displays are typically driven by a cluster of computers. Running existing games on a cluster is non-trivial, and the performance attained using software solutions like Chromium is not good enough. This paper presents a touch-free, multi-user, humancomputer interface for wall-sized displays that enables completely device-free interaction. The interface is built using 16 cameras and a cluster of computers, and is integrated with the games Quake 3 Arena (Q3A) and Homeworld. The two games were parallelized using two different approaches in order to run on a 7x4 tile, 21 megapixel display wall with good performance. The touch-free interface enables interaction with a latency of 116 ms, where 81 ms are due to the camera hardware. The rendering performance of the games is compared to their sequential counterparts running on the display wall using Chromium. Parallel Q3A’s framerate is an order of magnitude higher compared to using Chromium. The parallel version of Homeworld performed on par with the sequential, which did not run at all using Chromium. Informal use of the touch-free interface indicates that it works better for controlling Q3A than Homeworld.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a customizable system used to develop a collaborative multi-user problem solving game. It addresses the increasing demand for appealing informal learning experiences in museum-like settings. The system facilitates remote collaboration by allowing groups of learners tocommunicate through a videoconferencing system and by allowing them to simultaneously interact through a shared multi-touch interactive surface. A user study with 20 user groups indicates that the game facilitates collaboration between local and remote groups of learners. The videoconference and multitouch surface acted as communication channels, attracted students’ interest, facilitated engagement, and promoted inter- and intra-group collaboration—favoring intra-group collaboration. Our findings suggest that augmentingvideoconferencing systems with a shared multitouch space offers newpossibilities and scenarios for remote collaborative environments and collaborative learning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aquest TFC exposa un estudi de les dades i el context en què s'ha de presentar la informació. S'analitza el gruix de dades, la importància de cadascun dels paràmetres, les fonts de coneixement disponibles i l'efecte que es pretén aconseguir.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tabletop computers featuring multi-touch input and object tracking are a common platform for research on Tangible User Interfaces (also known as Tangible Interaction). However, such systems are confined to sensing activity on the tabletop surface, disregarding the rich and relatively unexplored interaction canvas above the tabletop. This dissertation contributes with tCAD, a 3D modeling tool combining fiducial marker tracking, finger tracking and depth sensing in a single system. This dissertation presents the technical details of how these features were integrated, attesting to its viability through the design, development and early evaluation of the tCAD application. A key aspect of this work is a description of the interaction techniques enabled by merging tracked objects with direct user input on and above a table surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Comunicação - FAAC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent developments in the area of interactive entertainment have suggested to combine stereoscopic visualization with multi-touch displays, which has the potential to open up new vistas for natural interaction with interactive three-dimensional (3D) applications. However, the question arises how the user interfaces for system control in such 3D setups should be designed in order to provide an effective user experience. In this article we introduce 3D GUI widgets for interaction with stereoscopic touch displays. The design of the widgets was inspired to skeuomorphism and affordances in such a way that the user should be able to operate the virtual objects in the same way as their real-world equivalents. We evaluate the developed widgets and compared them with their 2D counterparts in the scope of an example application in order to analyze the usability of and user behavior with the widgets. The results reveal differences in user behavior with and without stereoscopic display during touch interaction, and show that the developed 2D as well as 3D GUI widgets can be used effectively in different applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Visual information is becoming increasingly important and tools to manage repositories of media collections are highly sought after. In this paper, we focus on image databases and on how to effectively and efficiently access these. In particular, we present effective image browsing systems that are operated on a large multi-touch environment for truly interactive exploration. Not only do image browsers pose a useful alternative to retrieval-based systems, they also provide a visualisation of the whole image collection and let users explore particular parts of the collection. Our systems are based on the idea that visually similar images are located close to each other in the visualisation, that image thumbnails are arranged on a regular lattice (either a regular grid projected on a sphere or a hexagonal lattice), and that large image datasets can be accessed through a hierarchical tree structure. © 2014 International Information Institute.