898 resultados para Multi Kidney Exchange Problem KEP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le persone che soffrono di insufficienza renale terminale hanno due possibili trattamenti da affrontare: la dialisi oppure il trapianto di organo. Nel caso volessero seguire la seconda strada, oltre che essere inseriti nella lista d'attesa dei donatori deceduti, possono trovare una persona, come il coniuge, un parente o un amico, disposta a donare il proprio rene. Tuttavia, non sempre il trapianto è fattibile: donatore e ricevente possono, infatti, presentare delle incompatibilità a livello di gruppo sanguigno o di tessuto organico. Come risposta a questo tipo di problema nasce il KEP (Kidney Exchange Program), un programma, ampiamente avviato in diverse realtà europee e mondiali, che si occupa di raggruppare in un unico insieme le coppie donatore/ricevente in questa stessa situazione al fine di operare e massimizzare scambi incrociati di reni fra coppie compatibili. Questa tesi approffondisce tale questione andando a valutare la possibilità di unire in un unico insieme internazionale coppie donatore/ricevente provenienti da più paesi. Lo scopo, naturalmente, è quello di poter ottenere un numero sempre maggiore di trapianti effettuati. Lo studio affronta dal punto di vista matematico problematiche legate a tale collaborazione: i paesi che eventualmente accettassero di partecipare a un simile programma, infatti, devono avere la garanzia non solo di ricavarne un vantaggio, ma anche che tale vantaggio sia equamente distribuito fra tutti i paesi partecipanti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years several countries have set up policies that allow exchange of kidneys between two or more incompatible patient–donor pairs. These policies lead to what is commonly known as kidney exchange programs. The underlying optimization problems can be formulated as integer programming models. Previously proposed models for kidney exchange programs have exponential numbers of constraints or variables, which makes them fairly difficult to solve when the problem size is large. In this work we propose two compact formulations for the problem, explain how these formulations can be adapted to address some problem variants, and provide results on the dominance of some models over others. Finally we present a systematic comparison between our models and two previously proposed ones via thorough computational analysis. Results show that compact formulations have advantages over non-compact ones when the problem size is large.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a genetic algorithm for the resource constrained multi-project scheduling problem. The chromosome representation of the problem is based on random keys. The schedules are constructed using a heuristic that builds parameterized active schedules based on priorities, delay times, and release dates defined by the genetic algorithm. The approach is tested on a set of randomly generated problems. The computational results validate the effectiveness of the proposed algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The purpose of this research is to develop a holistic approach to maximize the customer service level while minimizing the logistics cost by using an integrated multiple criteria decision making (MCDM) method for the contemporary transshipment problem. Unlike the prevalent optimization techniques, this paper proposes an integrated approach which considers both quantitative and qualitative factors in order to maximize the benefits of service deliverers and customers under uncertain environments. Design/methodology/approach – This paper proposes a fuzzy-based integer linear programming model, based on the existing literature and validated with an example case. The model integrates the developed fuzzy modification of the analytic hierarchy process (FAHP), and solves the multi-criteria transshipment problem. Findings – This paper provides several novel insights about how to transform a company from a cost-based model to a service-dominated model by using an integrated MCDM method. It suggests that the contemporary customer-driven supply chain remains and increases its competitiveness from two aspects: optimizing the cost and providing the best service simultaneously. Research limitations/implications – This research used one illustrative industry case to exemplify the developed method. Considering the generalization of the research findings and the complexity of the transshipment service network, more cases across multiple industries are necessary to further enhance the validity of the research output. Practical implications – The paper includes implications for the evaluation and selection of transshipment service suppliers, the construction of optimal transshipment network as well as managing the network. Originality/value – The major advantages of this generic approach are that both quantitative and qualitative factors under fuzzy environment are considered simultaneously and also the viewpoints of service deliverers and customers are focused. Therefore, it is believed that it is useful and applicable for the transshipment service network design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decision making and technical decision analysis demand computer-aided techniques and therefore more and more support by formal techniques. In recent years fuzzy decision analysis and related techniques gained importance as an efficient method for planning and optimization applications in fields like production planning, financial and economical modeling and forecasting or classification. It is also known, that the hierarchical modeling of the situation is one of the most popular modeling method. It is shown, how to use the fuzzy hierarchical model in complex with other methods of Multiple Criteria Decision Making. We propose a novel approach to overcome the inherent limitations of Hierarchical Methods by exploiting multiple criteria decision making.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we focus on optimization and simulation techniques applied to solve strategic, tactical and operational problems rising in the healthcare sector. At first we present three applications to Emilia-Romagna Public Health System (SSR) developed in collaboration with Agenzia Sanitaria e Sociale dell'Emilia-Romagna (ASSR), a regional center for innovation and improvement in health. Agenzia launched a strategic campaign aimed at introducing Operations Research techniques as decision making tools to support technological and organizational innovations. The three applications focus on forecast and fund allocation of medical specialty positions, breast screening program extension and operating theater planning. The case studies exploit the potential of combinatorial optimization, discrete event simulation and system dynamics techniques to solve resource constrained problem arising within Emilia-Romagna territory. We then present an application in collaboration with Dipartimento di Epidemiologia del Lazio that focuses on population demand of service allocation to regional emergency departments. Finally, a simulation-optimization approach, developed in collaboration with INESC TECH center of Porto, to evaluate matching policies for the kidney exchange problem is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a framework based on the decomposition of the first-order optimality conditions is described and applied to solve the Probabilistic Power Flow (PPF) problem in a coordinated but decentralized way in the context of multi-area power systems. The purpose of the decomposition framework is to solve the problem through a process of solving smaller subproblems, associated with each area of the power system, iteratively. This strategy allows the probabilistic analysis of the variables of interest, in a particular area, without explicit knowledge of network data of the other interconnected areas, being only necessary to exchange border information related to the tie-lines between areas. An efficient method for probabilistic analysis, considering uncertainty in n system loads, is applied. The proposal is to use a particular case of the point estimate method, known as Two-Point Estimate Method (TPM), rather than the traditional approach based on Monte Carlo simulation. The main feature of the TPM is that it only requires resolve 2n power flows for to obtain the behavior of any random variable. An iterative coordination algorithm between areas is also presented. This algorithm solves the Multi-Area PPF problem in a decentralized way, ensures the independent operation of each area and integrates the decomposition framework and the TPM appropriately. The IEEE RTS-96 system is used in order to show the operation and effectiveness of the proposed approach and the Monte Carlo simulations are used to validation of the results. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cost of a new ship design heavily depends on the principal dimensions of the ship; however, dimensions minimization often conflicts with the minimum oil outflow (in the event of an accidental spill). This study demonstrates one rational methodology for selecting the optimal dimensions and coefficients of form of tankers via the use of a genetic algorithm. Therein, a multi-objective optimization problem was formulated by using two objective attributes in the evaluation of each design, specifically, total cost and mean oil outflow. In addition, a procedure that can be used to balance the designs in terms of weight and useful space is proposed. A genetic algorithm was implemented to search for optimal design parameters and to identify the nondominated Pareto frontier. At the end of this study, three real ships are used as case studies. [DOI:10.1115/1.4002740]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solvent extraction is considered as a multi-criteria optimization problem, since several chemical species with similar extraction kinetic properties are frequently present in the aqueous phase and the selective extraction is not practicable. This optimization, applied to mixer–settler units, considers the best parameters and operating conditions, as well as the best structure or process flow-sheet. Global process optimization is performed for a specific flow-sheet and a comparison of Pareto curves for different flow-sheets is made. The positive weight sum approach linked to the sequential quadratic programming method is used to obtain the Pareto set. In all investigated structures, recovery increases with hold-up, residence time and agitation speed, while the purity has an opposite behaviour. For the same treatment capacity, counter-current arrangements are shown to promote recovery without significant impairment in purity. Recycling the aqueous phase is shown to be irrelevant, but organic recycling with as many stages as economically feasible clearly improves the design criteria and reduces the most efficient organic flow-rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computerized scheduling methods and computerized scheduling systems according to exemplary embodiments. A computerized scheduling method may be stored in a memory and executed on one or more processors. The method may include defining a main multi-machine scheduling problem as a plurality of single machine scheduling problems; independently solving the plurality of single machine scheduling problems thereby calculating a plurality of near optimal single machine scheduling problem solutions; integrating the plurality of near optimal single machine scheduling problem solutions into a main multi-machine scheduling problem solution; and outputting the main multi-machine scheduling problem solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The solvability of the problem of fair exchange in a synchronous system subject to Byzantine failures is investigated in this work. The fair exchange problem arises when a group of processes are required to exchange digital items in a fair manner, which means that either each process obtains the item it was expecting or no process obtains any information on, the inputs of others. After introducing a novel specification of fair exchange that clearly separates safety and liveness, we give an overview of the difficulty of solving such a problem in the context of a fully-connected topology. On one hand, we show that no solution to fair exchange exists in the absence of an identified process that every process can trust a priori; on the other, a well-known solution to fair exchange relying on a trusted third party is recalled. These two results lead us to complete our system model with a flexible representation of the notion of trust. We then show that fair exchange is solvable if and only if a connectivity condition, named the reachable majority condition, is satisfied. The necessity of the condition is proven by an impossibility result and its sufficiency by presenting a general solution to fair exchange relying on a set of trusted processes. The focus is then turned towards a specific network topology in order to provide a fully decentralized, yet realistic, solution to fair exchange. The general solution mentioned above is optimized by reducing the computational load assumed by trusted processes as far as possible. Accordingly, our fair exchange protocol relies on trusted tamperproof modules that have limited communication abilities and are only required in key steps of the algorithm. This modular solution is then implemented in the context of a pedagogical application developed for illustrating and apprehending the complexity of fair exchange. This application, which also includes the implementation of a wide range of Byzantine behaviors, allows executions of the algorithm to be set up and monitored through a graphical display. Surprisingly, some of our results on fair exchange seem contradictory with those found in the literature of secure multiparty computation, a problem from the field of modern cryptography, although the two problems have much in common. Both problems are closely related to the notion of trusted third party, but their approaches and descriptions differ greatly. By introducing a common specification framework, a comparison is proposed in order to clarify their differences and the possible origins of the confusion between them. This leads us to introduce the problem of generalized fair computation, a generalization of fair exchange. Finally, a solution to this new problem is given by generalizing our modular solution to fair exchange

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an improved stochastic discrimination (SD) is introduced to reduce the error rate of the standard SD in the context of multi-class classification problem. The learning procedure of the improved SD consists of two stages. In the first stage, a standard SD, but with shorter learning period is carried out to identify an important space where all the misclassified samples are located. In the second stage, the standard SD is modified by (i) restricting sampling in the important space; and (ii) introducing a new discriminant function for samples in the important space. It is shown by mathematical derivation that the new discriminant function has the same mean, but smaller variance than that of standard SD for samples in the important space. It is also analyzed that the smaller the variance of the discriminant function, the lower the error rate of the classifier. Consequently, the proposed improved SD improves standard SD by its capability of achieving higher classification accuracy. Illustrative examples axe provided to demonstrate the effectiveness of the proposed improved SD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to investigate several analytical methods of solving first passage (FP) problem for the Rouse model, a simplest model of a polymer chain. We show that this problem has to be treated as a multi-dimensional Kramers' problem, which presents rich and unexpected behavior. We first perform direct and forward-flux sampling (FFS) simulations, and measure the mean first-passage time $\tau(z)$ for the free end to reach a certain distance $z$ away from the origin. The results show that the mean FP time is getting faster if the Rouse chain is represented by more beads. Two scaling regimes of $\tau(z)$ are observed, with transition between them varying as a function of chain length. We use these simulations results to test two theoretical approaches. One is a well known asymptotic theory valid in the limit of zero temperature. We show that this limit corresponds to fully extended chain when each chain segment is stretched, which is not particularly realistic. A new theory based on the well known Freidlin-Wentzell theory is proposed, where dynamics is projected onto the minimal action path. The new theory predicts both scaling regimes correctly, but fails to get the correct numerical prefactor in the first regime. Combining our theory with the FFS simulations lead us to a simple analytical expression valid for all extensions and chain lengths. One of the applications of polymer FP problem occurs in the context of branched polymer rheology. In this paper, we consider the arm-retraction mechanism in the tube model, which maps exactly on the model we have solved. The results are compared to the Milner-McLeish theory without constraint release, which is found to overestimate FP time by a factor of 10 or more.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Thesis Work will concentrate on a very interesting problem, the Vehicle Routing Problem (VRP). In this problem, customers or cities have to be visited and packages have to be transported to each of them, starting from a basis point on the map. The goal is to solve the transportation problem, to be able to deliver the packages-on time for the customers,-enough package for each Customer,-using the available resources- and – of course - to be so effective as it is possible.Although this problem seems to be very easy to solve with a small number of cities or customers, it is not. In this problem the algorithm have to face with several constraints, for example opening hours, package delivery times, truck capacities, etc. This makes this problem a so called Multi Constraint Optimization Problem (MCOP). What’s more, this problem is intractable with current amount of computational power which is available for most of us. As the number of customers grow, the calculations to be done grows exponential fast, because all constraints have to be solved for each customers and it should not be forgotten that the goal is to find a solution, what is best enough, before the time for the calculation is up. This problem is introduced in the first chapter: form its basics, the Traveling Salesman Problem, using some theoretical and mathematical background it is shown, why is it so hard to optimize this problem, and although it is so hard, and there is no best algorithm known for huge number of customers, why is it a worth to deal with it. Just think about a huge transportation company with ten thousands of trucks, millions of customers: how much money could be saved if we would know the optimal path for all our packages.Although there is no best algorithm is known for this kind of optimization problems, we are trying to give an acceptable solution for it in the second and third chapter, where two algorithms are described: the Genetic Algorithm and the Simulated Annealing. Both of them are based on obtaining the processes of nature and material science. These algorithms will hardly ever be able to find the best solution for the problem, but they are able to give a very good solution in special cases within acceptable calculation time.In these chapters (2nd and 3rd) the Genetic Algorithm and Simulated Annealing is described in details, from their basis in the “real world” through their terminology and finally the basic implementation of them. The work will put a stress on the limits of these algorithms, their advantages and disadvantages, and also the comparison of them to each other.Finally, after all of these theories are shown, a simulation will be executed on an artificial environment of the VRP, with both Simulated Annealing and Genetic Algorithm. They will both solve the same problem in the same environment and are going to be compared to each other. The environment and the implementation are also described here, so as the test results obtained.Finally the possible improvements of these algorithms are discussed, and the work will try to answer the “big” question, “Which algorithm is better?”, if this question even exists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In multi-label classification, examples can be associated with multiple labels simultaneously. The task of learning from multi-label data can be addressed by methods that transform the multi-label classification problem into several single-label classification problems. The binary relevance approach is one of these methods, where the multi-label learning task is decomposed into several independent binary classification problems, one for each label in the set of labels, and the final labels for each example are determined by aggregating the predictions from all binary classifiers. However, this approach fails to consider any dependency among the labels. Aiming to accurately predict label combinations, in this paper we propose a simple approach that enables the binary classifiers to discover existing label dependency by themselves. An experimental study using decision trees, a kernel method as well as Naive Bayes as base-learning techniques shows the potential of the proposed approach to improve the multi-label classification performance.