797 resultados para Movie affective classification
Resumo:
Emotions play a central role in our daily lives, influencing the way we think and act, our health and sense of well-being, and films are by excellence the form of art that exploits our affective, perceptual and intellectual activity, holding the potential for a significant impact. Video is becoming a dominant and pervasive medium, and online video a growing entertainment activity on the web and iTV, mainly due to technological developments and the trends for media convergence. In addition, the improvement of new techniques for gathering emotional information about videos, both through content analysis or user implicit feedback through user physiological signals complemented in manual labeling from users, is revealing new ways for exploring emotional information in videos, films or TV series, and brings out new perspectives to enrich and personalize video access. In this work, we reflect on the power that emotions have in our lives, on the emotional impact of movies, and on how to address this emotional dimension in the way we classify and access movies, by exploring and evaluating the design of iFelt in its different ways to classify, access, browse and visualize movies based on their emotional impac
Resumo:
Recent reports indicate that several descriptors of pain sensations in the McGill Pain Questionnaire (MPQ) are difficult to classify within MPQ sensory subcategories because of incomprehension, underuse, or ambiguity of usage. Adopting the same methodology of recent studies, the present investigation focused on the affective and evaluative subcategories of the MPQ. A decision rule revealed that only 6 of 18 words met criteria for the affective category and 5 of 11 words met criteria for the evaluative category, thus warranting a reduced list of words in these categories. This reduction, however, led to negligible loss of information transmitted. Despite notable changes in classification, the intensity ratings of the retained words correlated very highly with those originally reported for the MPQ. In conclusion, although the intensity ratings of MPQ affective and evaluative descriptors need no revision, selective reduction and reorganization of these descriptors can enhance the efficiency of this approach to pain assessment. [copy ] 2001 by the American Pain Society
Resumo:
A target word is classified faster as pleasant or unpleasant if preceded by a prime that matches the target word’s valence. This affective priming phenomenon is currently popular as an implicit measure of stimulus valence. The present set of experiments investigated whether rated stimulus arousal will affect target classification as well. In three experiments, word targets were preceded by prime stimuli that differed in rated arousal and valence. The basic priming effect was replicated in all experiments, however, priming was largest after high arousal unpleasant and low arousal pleasant primes, and reduced after low arousal unpleasant and high arousal pleasant primes. This finding emerged for picture and word primes and does not reflect the effect of differences in stimulus complexity. The difference in the effectiveness of the primes was not affected by SOA and seemed to hold across a wide range (50-200 ms for words and 200-500 ms for pictures). The present results suggest that some failures to find affective priming may not reflect on prime valence, but on prime arousal. Moreover, it suggests that increases in stimulus arousal have differential effects for the processing of pleasant and unpleasant stimuli.
Resumo:
We propose a novel framework where an initial classifier is learned by incorporating prior information extracted from an existing sentiment lexicon. Preferences on expectations of sentiment labels of those lexicon words are expressed using generalized expectation criteria. Documents classified with high confidence are then used as pseudo-labeled examples for automatical domain-specific feature acquisition. The word-class distributions of such self-learned features are estimated from the pseudo-labeled examples and are used to train another classifier by constraining the model's predictions on unlabeled instances. Experiments on both the movie review data and the multi-domain sentiment dataset show that our approach attains comparable or better performance than exiting weakly-supervised sentiment classification methods despite using no labeled documents.
Resumo:
Joint sentiment-topic (JST) model was previously proposed to detect sentiment and topic simultaneously from text. The only supervision required by JST model learning is domain-independent polarity word priors. In this paper, we modify the JST model by incorporating word polarity priors through modifying the topic-word Dirichlet priors. We study the polarity-bearing topics extracted by JST and show that by augmenting the original feature space with polarity-bearing topics, the in-domain supervised classifiers learned from augmented feature representation achieve the state-of-the-art performance of 95% on the movie review data and an average of 90% on the multi-domain sentiment dataset. Furthermore, using feature augmentation and selection according to the information gain criteria for cross-domain sentiment classification, our proposed approach performs either better or comparably compared to previous approaches. Nevertheless, our approach is much simpler and does not require difficult parameter tuning.
Resumo:
Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.
Resumo:
Physiological signals, which are controlled by the autonomic nervous system (ANS), could be used to detect the affective state of computer users and therefore find applications in medicine and engineering. The Pupil Diameter (PD) seems to provide a strong indication of the affective state, as found by previous research, but it has not been investigated fully yet. ^ In this study, new approaches based on monitoring and processing the PD signal for off-line and on-line affective assessment ("relaxation" vs. "stress") are proposed. Wavelet denoising and Kalman filtering methods are first used to remove abrupt changes in the raw Pupil Diameter (PD) signal. Then three features (PDmean, PDmax and PDWalsh) are extracted from the preprocessed PD signal for the affective state classification. In order to select more relevant and reliable physiological data for further analysis, two types of data selection methods are applied, which are based on the paired t-test and subject self-evaluation, respectively. In addition, five different kinds of the classifiers are implemented on the selected data, which achieve average accuracies up to 86.43% and 87.20%, respectively. Finally, the receiver operating characteristic (ROC) curve is utilized to investigate the discriminating potential of each individual feature by evaluation of the area under the ROC curve, which reaches values above 0.90. ^ For the on-line affective assessment, a hard threshold is implemented first in order to remove the eye blinks from the PD signal and then a moving average window is utilized to obtain the representative value PDr for every one-second time interval of PD. There are three main steps for the on-line affective assessment algorithm, which are preparation, feature-based decision voting and affective determination. The final results show that the accuracies are 72.30% and 73.55% for the data subsets, which were respectively chosen using two types of data selection methods (paired t-test and subject self-evaluation). ^ In order to further analyze the efficiency of affective recognition through the PD signal, the Galvanic Skin Response (GSR) was also monitored and processed. The highest affective assessment classification rate obtained from GSR processing is only 63.57% (based on the off-line processing algorithm). The overall results confirm that the PD signal should be considered as one of the most powerful physiological signals to involve in future automated real-time affective recognition systems, especially for detecting the "relaxation" vs. "stress" states.^
Resumo:
Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.
Resumo:
Though the trend rarely receives attention, since the 1970s many American filmmakers have been taking sound and music tropes from children’s films, television shows, and other forms of media and incorporating those sounds into films intended for adult audiences. Initially, these references might seem like regressive attempts at targeting some nostalgic desire to relive childhood. However, this dissertation asserts that these children’s sounds are instead designed to reconnect audience members with the multi-faceted fantasies and coping mechanisms that once, through children’s media, helped these audience members manage life’s anxieties. Because sound is the sense that Western audiences most associate with emotion and memory, it offers audiences immediate connection with these barely conscious longings. The first chapter turns to children’s media itself and analyzes Disney’s 1950s forays into television. The chapter argues that by selectively repurposing the gentlest sonic devices from the studio’s films, television shows like Disneyland created the studio’s signature sentimental “Disney sound.” As a result, a generation of baby boomers like Steven Spielberg comes of age and longs to recreate that comforting sound world. The second chapter thus focuses on Spielberg, who incorporates Disney music in films like Close Encounters of the Third Kind (1977). Rather than recreate Disney’s sound world, Spielberg uses this music as a springboard into a new realm I refer to as “sublime refuge” - an acoustic haven that combines overpowering sublimity and soothing comfort into one fantastical experience. The second half of the dissertation pivots into more experimental children’s cartoons like Gerald McBoing-Boing (1951) - cartoons that embrace audio-visual dissonance in ways that soothe even as they create tension through a phenomenon I call “comfortable discord.” In the final chapter, director Wes Anderson reveals that these sonic tensions have just as much appeal to adults. In films like The Royal Tenenbaums (2001), Anderson demonstrates that comfortable discord can simultaneously provide a balm for anxiety and create an open-ended space that makes empathetic connections between characters possible. The dissertation closes with a call to rethink nostalgia, not as a romanticization of the past, but rather as a reconnection with forgotten affective channels.
Resumo:
Physiological signals, which are controlled by the autonomic nervous system (ANS), could be used to detect the affective state of computer users and therefore find applications in medicine and engineering. The Pupil Diameter (PD) seems to provide a strong indication of the affective state, as found by previous research, but it has not been investigated fully yet. In this study, new approaches based on monitoring and processing the PD signal for off-line and on-line affective assessment (“relaxation” vs. “stress”) are proposed. Wavelet denoising and Kalman filtering methods are first used to remove abrupt changes in the raw Pupil Diameter (PD) signal. Then three features (PDmean, PDmax and PDWalsh) are extracted from the preprocessed PD signal for the affective state classification. In order to select more relevant and reliable physiological data for further analysis, two types of data selection methods are applied, which are based on the paired t-test and subject self-evaluation, respectively. In addition, five different kinds of the classifiers are implemented on the selected data, which achieve average accuracies up to 86.43% and 87.20%, respectively. Finally, the receiver operating characteristic (ROC) curve is utilized to investigate the discriminating potential of each individual feature by evaluation of the area under the ROC curve, which reaches values above 0.90. For the on-line affective assessment, a hard threshold is implemented first in order to remove the eye blinks from the PD signal and then a moving average window is utilized to obtain the representative value PDr for every one-second time interval of PD. There are three main steps for the on-line affective assessment algorithm, which are preparation, feature-based decision voting and affective determination. The final results show that the accuracies are 72.30% and 73.55% for the data subsets, which were respectively chosen using two types of data selection methods (paired t-test and subject self-evaluation). In order to further analyze the efficiency of affective recognition through the PD signal, the Galvanic Skin Response (GSR) was also monitored and processed. The highest affective assessment classification rate obtained from GSR processing is only 63.57% (based on the off-line processing algorithm). The overall results confirm that the PD signal should be considered as one of the most powerful physiological signals to involve in future automated real-time affective recognition systems, especially for detecting the “relaxation” vs. “stress” states.
Resumo:
Ochnaceae s.str. (Malpighiales) are a pantropical family of about 500 species and 27 genera of almost exclusively woody plants. Infrafamilial classification and relationships have been controversial partially due to the lack of a robust phylogenetic framework. Including all genera except Indosinia and Perissocarpa and DNA sequence data for five DNA regions (ITS, matK, ndhF, rbcL, trnL-F), we provide for the first time a nearly complete molecular phylogenetic analysis of Ochnaceae s.l. resolving most of the phylogenetic backbone of the family. Based on this, we present a new classification of Ochnaceae s.l., with Medusagynoideae and Quiinoideae included as subfamilies and the former subfamilies Ochnoideae and Sauvagesioideae recognized at the rank of tribe. Our data support a monophyletic Ochneae, but Sauvagesieae in the traditional circumscription is paraphyletic because Testulea emerges as sister to the rest of Ochnoideae, and the next clade shows Luxemburgia+Philacra as sister group to the remaining Ochnoideae. To avoid paraphyly, we classify Luxemburgieae and Testuleeae as new tribes. The African genus Lophira, which has switched between subfamilies (here tribes) in past classifications, emerges as sister to all other Ochneae. Thus, endosperm-free seeds and ovules with partly to completely united integuments (resulting in an apparently single integument) are characters that unite all members of that tribe. The relationships within its largest clade, Ochnineae (former Ochneae), are poorly resolved, but former Ochninae (Brackenridgea, Ochna) are polyphyletic. Within Sauvagesieae, the genus Sauvagesia in its broad circumscription is polyphyletic as Sauvagesia serrata is sister to a clade of Adenarake, Sauvagesia spp., and three other genera. Within Quiinoideae, in contrast to former phylogenetic hypotheses, Lacunaria and Touroulia form a clade that is sister to Quiina. Bayesian ancestral state reconstructions showed that zygomorphic flowers with adaptations to buzz-pollination (poricidal anthers), a syncarpous gynoecium (a near-apocarpous gynoecium evolved independently in Quiinoideae and Ochninae), numerous ovules, septicidal capsules, and winged seeds with endosperm are the ancestral condition in Ochnoideae. Although in some lineages poricidal anthers were lost secondarily, the evolution of poricidal superstructures secured the maintenance of buzz-pollination in some of these genera, indicating a strong selective pressure on keeping that specialized pollination system.
Resumo:
Diabetic Retinopathy (DR) is a complication of diabetes that can lead to blindness if not readily discovered. Automated screening algorithms have the potential to improve identification of patients who need further medical attention. However, the identification of lesions must be accurate to be useful for clinical application. The bag-of-visual-words (BoVW) algorithm employs a maximum-margin classifier in a flexible framework that is able to detect the most common DR-related lesions such as microaneurysms, cotton-wool spots and hard exudates. BoVW allows to bypass the need for pre- and post-processing of the retinographic images, as well as the need of specific ad hoc techniques for identification of each type of lesion. An extensive evaluation of the BoVW model, using three large retinograph datasets (DR1, DR2 and Messidor) with different resolution and collected by different healthcare personnel, was performed. The results demonstrate that the BoVW classification approach can identify different lesions within an image without having to utilize different algorithms for each lesion reducing processing time and providing a more flexible diagnostic system. Our BoVW scheme is based on sparse low-level feature detection with a Speeded-Up Robust Features (SURF) local descriptor, and mid-level features based on semi-soft coding with max pooling. The best BoVW representation for retinal image classification was an area under the receiver operating characteristic curve (AUC-ROC) of 97.8% (exudates) and 93.5% (red lesions), applying a cross-dataset validation protocol. To assess the accuracy for detecting cases that require referral within one year, the sparse extraction technique associated with semi-soft coding and max pooling obtained an AUC of 94.2 ± 2.0%, outperforming current methods. Those results indicate that, for retinal image classification tasks in clinical practice, BoVW is equal and, in some instances, surpasses results obtained using dense detection (widely believed to be the best choice in many vision problems) for the low-level descriptors.
Resumo:
261
Resumo:
The Subaxial Injury Classification (SLIC) system and severity score has been developed to help surgeons in the decision-making process of treatment of subaxial cervical spine injuries. A detailed description of all potential scored injures of the SLIC is lacking. We performed a systematic review in the PubMed database from 2007 to 2014 to describe the relationship between the scored injuries in the SLIC and their eventual treatment according to the system score. Patients with an SLIC of 1-3 points (conservative treatment) are neurologically intact with the spinous process, laminar or small facet fractures. Patients with compression and burst fractures who are neurologically intact are also treated nonsurgically. Patients with an SLIC of 4 points may have an incomplete spinal cord injury such as a central cord syndrome, compression injuries with incomplete neurologic deficits and burst fractures with complete neurologic deficits. SLIC of 5-10 points includes distraction and rotational injuries, traumatic disc herniation in the setting of a neurological deficit and burst fractures with an incomplete neurologic deficit. The SLIC injury severity score can help surgeons guide fracture treatment. Knowledge of the potential scored injures and their relationships with the SLIC are of paramount importance for spine surgeons who treated subaxial cervical spine injuries.
Resumo:
to assess the construct validity and reliability of the Pediatric Patient Classification Instrument. correlation study developed at a teaching hospital. The classification involved 227 patients, using the pediatric patient classification instrument. The construct validity was assessed through the factor analysis approach and reliability through internal consistency. the Exploratory Factor Analysis identified three constructs with 67.5% of variance explanation and, in the reliability assessment, the following Cronbach's alpha coefficients were found: 0.92 for the instrument as a whole; 0.88 for the Patient domain; 0.81 for the Family domain; 0.44 for the Therapeutic procedures domain. the instrument evidenced its construct validity and reliability, and these analyses indicate the feasibility of the instrument. The validation of the Pediatric Patient Classification Instrument still represents a challenge, due to its relevance for a closer look at pediatric nursing care and management. Further research should be considered to explore its dimensionality and content validity.