925 resultados para Mount Everest
Resumo:
High-resolution major and trace elements (Sr, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, U, Tl, Al, S, Ca, Ti, V, Cr, Mn, Fe, and Co) quantified in a Mount Everest ice core ( 6518 m above sea level) spanning the period 1650-2002 AD provides the first Asian record of trace element concentrations from the pre-industrial era, and the first continuous high-resolution Asian record from which natural baseline concentrations and subsequent changes due to anthropogenic activities can be examined. Modern concentrations of most elements remain within the pre-industrial range; however, Bi, U, and Cs concentrations and their enrichment factors (EF) have increased since the similar to 1950s, and S and Ca concentrations and their EFs have increased since the late 1980s. A comparison of the Bi, U, Cs, S, and Ca data with other ice core records and production data indicates that the increase in atmospheric concentrations of trace elements is widespread, but that enrichment varies regionally. Likely sources for the recent enrichment of these elements include mining, metal smelting, oil and coal combustion, and end uses for Bi, and mining and refinement for U and Cs. The source of the synchronous enrichment of Ca and S is less certain, but may be related to land use and environmental change.
Resumo:
A Mount Everest ice core analyzed at high resolution for major and trace elements (Sr, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, U, Tl, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co) and spanning the period A. D. 1650- 2002 is used to investigate the sources of and variations in atmospheric dust through time. The chemical composition of dust varies seasonally, and peak dust concentrations occur during the winter-spring months. Significant correlations between the Everest dust record and dust observations at stations suggest that the Everest record is representative of regional variations in atmospheric dust loading. Back-trajectory analysis in addition to a significant correlation of Everest dust concentrations and the Total Ozone Mapping Spectrometer (TOMS) aerosol index indicates that the dominant winter sources of dust are the Arabian Peninsula, Thar Desert, and northern Sahara. Factors that contribute to dust generation at the surface include soil moisture and temperature, and the long-range transport of dust aerosols appears to be sensitive to the strength of 500-mb zonal winds. There are periods of high dust concentration throughout the 350-yr Mount Everest dust record; however, there is an increase in these periods since the early 1800s. The record was examined for recent increases in dust emissions associated with anthropogenic activities, but no recent dust variations can be conclusively attributed to anthropogenic inputs of dust.
Resumo:
An NH4+ record covering the period A.D. 1845-1997 was reconstructed using an 80.4 m ice core from East Rongbuk Glacier at an elevation of 6450 m on the northern slope of Mount Everest. Variations in NH4+ are characterized by a dramatic increase since the 1950s. The highest NH4+ concentrations occur in the 1980s. They are about twofold more than those in the first half of twentieth century. Empirical orthogonal function (EOF) analysis on the eight major ion (Na+,K+,Mg2+,NH4+,Ca2+,NO3-,SO42- and Cl-) series from this core indicates that NH4+ is loaded mainly on EOF3 (60% of NH4+ variance), suggesting that NH4+ has a unique signature. Instrumental sea level pressure (SLP) and regional temperatures are used to explore the relationship between NH4+ variations and both atmospheric circulation and natural source strength over Asia. Higher NH4+ concentrations are associated with an enhanced winter Mongolian High and a deepened summer Mongolian Low. A positive relationship also exists between NH4+ concentrations and regional temperature changes of the GIS Box 36 (Indian subcontinent), indicating that an increase in temperature may contribute to the strengthening of natural ammonia emissions (e. g., from plants and soils). A close positive correlation between NH4+ and acidic species (SO42- plus NO3-) concentrations suggests that a portion of the increase in NH4+ concentrations could be contributed by enhanced atmospheric acidification. Anthropogenic ammonia emissions from enhanced agricultural activities and energy consumption over Asia in concert with population increase since the 1950s appear also to be a significant factor in the dramatic increase of NH4+ concentrations during the last few decades.
Resumo:
Annual-layer thickness data, spanning AD 1534-2001, from an ice core from East Rongbuk Coll on Qomolangma (Mount Everest, Himalaya) yield an age-depth profile that deviates systematically from a constant accumulation-rate analytical model. The profile clearly shows that the mean accumulation rate has changed every 50-100 years. A numerical model was developed to determine the magnitude of these multi-decadal-scale rates. The model was used to obtain a time series of annual accumulation. The mean annual accumulation rate decreased from similar to 0.8 m ice equivalent in the 1500s to similar to 0.3 m in the mid-1800s. From similar to 1880 to similar to 1970 the rate increased. However, it has decreased since similar to 1970. Comparison with six other records from the Himalaya and the Tibetan Plateau shows that the changes in accumulation in East Rongbuk Col are broadly consistent with a regional pattern over much of the Plateau. This suggests that there may be an overarching mechanism controlling precipitation and mass balance over this area. However, a record from Dasuopu, only 125 km northwest of Qomolangma and 700 m higher than East Rongbuk Col, shows a maximum in accumulation during the 1800s, a time during which the East Rongbuk Col and Tibetan Plateau ice-core and tree-ring records show a minimum. This asynchroneity may be due to altitudinal or seasonal differences in monsoon versus westerly moisture sources or complex mountain meteorology.
Resumo:
High-resolution chemical records from an 80.4 m ice core from the central Himalaya demonstrate climatic and environmental changes since 1844. The chronological net accumulation series shows a sharp decrease from the mid-1950s, which is coincident with the widely observed glacier retreat. A negative correlation is found between the ice-core delta(18)O record and the monsoon precipitation for Indian region 7. The temporal variation of the terrestrial ions (Ca2+ and Mg2+) is controlled by both the monsoon precipitation for Indian regions 3,7 and 8, located directly south and west of the Himalaya, and the dust-storm duration and frequency in the northern arid regions, such as the Taklimakan desert, China. The NH4+ profile is fairly flat until the 1940s, then substantially increases until the end of the 1980s, with a slight decrease during the 1990s which may reflect new agricultural practices. The SO42- and NO3- profiles show an apparent increasing trend, especially during the period 1940s-80s. Moreover, SO42- concentrations for the East Rongbuk Glacier core are roughly double that of the nearby Dasuopu core at Xixabangma, Himalaya, due to local human activity including that of climbing teams who use gasoline for cooking, energy and transport.
Resumo:
Mode of access: Internet.
Resumo:
Ice cores from outside the Greenland and Antarctic ice sheets are difficult to date because of seasonal melting and multiple sources (terrestrial, marine, biogenic and anthropogenic) of sulfates deposited onto the ice. Here we present a method of volcanic sulfate extraction that relies on fitting sulfate profiles to other ion species measured along the cores in moving windows in log space. We verify the method with a well dated section of the Belukha ice core from central Eurasia. There are excellent matches to volcanoes in the preindustrial, and clear extraction of volcanic peaks in the post-1940 period when a simple method based on calcium as a proxy for terrestrial sulfate fails due to anthropogenic sulfate deposition. We then attempt to use the same statistical scheme to locate volcanic sulfate horizons within three ice cores from Svalbard and a core from Mount Everest. Volcanic sulfate is <5% of the sulfate budget in every core, and differences in eruption signals extracted reflect the large differences in environment between western, northern and central regions of Svalbard. The Lomonosovfonna and Vestfonna cores span about the last 1000 years, with good extraction of volcanic signals, while Holtedahlfonna which extends to about AD1700 appears to lack a clear record. The Mount Everest core allows clean volcanic signal extraction and the core extends back to about AD700, slightly older than a previous flow model has suggested. The method may thus be used to extract historical volcanic records from a more diverse geographical range than hitherto.
Resumo:
This research investigates the decision making process of individuals from revealed preferences in extreme environments or life-and-death situations, from a behavioral economics perspective. The empirical analysis of revealed behavioral preferences shows how the individual decision making process can deviate from the standard self-interested or “homo economicus” model in non-standard situations. The environments examined include: elite athletes in FIFA World and Euro Cups; climbing on Everest and the Himalaya; communication during 9/11 and risk seeking after the 2011 Brisbane floods. The results reveal that the interaction of culture and environment has a significant impact on the decision process, as social behaviors and institutions are intimately intertwined, which govern the processes of human behavior and interaction. Additionally, that risk attitudes are not set and that immediate environmental factors can induce a significant shift in an individuals risk seeking behaviors.
Resumo:
Stable-water-isotope data (deltaD and delta(18)O) from three groups of samples (fresh-snow and snow-pit samples collected on Qomolangma (Mount Everest) and Xixabangma during field seasons 1997,1998 and 2001, and precipitation samples collected at Tingri station during summer 2000) are presented and used to survey the isotopic composition of precipitation over the northern slope of the central Himalaya. Multi-year snow-pit samples on Qomolangma have a local meteoric water-line (slope = 8) close to the global value. Deuterium excess (d = deltaD - 8delta(18)O) values at Tingri are much lower than those in fresh snow from Qomolangma, probably due to differences in moisture source and air-mass trajectories as well as local weather conditions. There is no obvious seasonal trend for d values in the Qomolangma region. A negative relationship exists between delta(18)O and d values in both fresh snow on Qomolangma and precipitation at Tingri. Fresh-snow samples collected from different altitudes on Xixabangma allow us to investigate the altitude effect on delta(18)O values in snow. Of four storm events, only one has an obvious altitude effect on delta(18)O variation and a very low gradient of -0.1% per 100 in elevation.