900 resultados para Moulting cycle
Resumo:
To investigate the reproductive biology of Callinectes ornatus gonadal and moulting cycles were studied over two consecutive years in the Ubatuba region. Six stages of gonadal development were detected in females and four in males. Observations on the number of ovigerous females, on the moulting stages of males and females, and on the percentage of individuals exhibiting mature gonads reveal a continuous reproductive cycle, the stages of which progress at different rates. These data support the hypothesis that C. ornatus shows staggered spawning, with possibly more than one annual reproductive period. A pause in growth before the terminal moult may occur in this species.
Resumo:
The moulting cycles of all larval instars (zoea I, zoea II, and megalopa) of the spider crab Maja brachydactyla Balss 1922 were studied in laboratory rearing experiments. Morphological changes in the epidermis and cuticle were photographically documented in daily intervals and assigned to successive stages of the moulting cycle (based on Drach's classification system). Our moult-stage characterizations are based on microscopical examination of integumental modifications mainly in the telson, using epidermal condensation, the degree of epidermal retraction (apolysis), and morphogenesis (mainly setagenesis) as criteria. In the zoea II and megalopa, the formation of new setae was also observed in larval appendages including the antenna, maxillule, maxilla, second maxilliped, pleopods, and uropods. As principal stages within the zoea I moulting cycle, we describe postmoult (Drach's stages A–B combined), intermoult (C), and premoult (D), the latter with three substages (D0, D1, and D2). In the zoea II and megalopa, D0 and D1 had to be combined, because morphogenesis (the main characteristic of D1) was unclear in the telson and did not occur synchronically in different appendices. The knowledge of the course and time scale of successive moult-cycle events can be used as a tool for the evaluation of the developmental state within individual larval instars, providing a morphological reference system for physiological and biochemical studies related to crab aquaculture.
Resumo:
Penaeid prawns form the most economically significant group in the marine and brackishwater fishery resources of India. This particular group contributes about 62% of the total prawn landings of the country. At present prawns have assumed an important place especially as a commodity supporting an export trade of sizable magnitude. Considerable interest has been shown in the last decade to increase prawn production through various culture practices, mainly due to the high demand for good quality prawns for export coupled with the stagnant and even depleting nature of marine catches. Available informations suggest that among the 15 species of shrimps and prawns occurring in Indian waters, which are deemed suitable for aquaculture, the Indian white prawn §.indicus is identified as one of the most important commercial species. Considering the increasing importance as an accepted species for prawn culture, £.indicus was selected for the present study. In the life history of prawns, moulting is an important event, which enables the animal to achieve growth. This dynamic physiological event continues through out the life span ofthe prawn, linking almost all biological activities with this process. Hence, a good knowledge pertaining to the physiology of moulting is imperative to understand the growth process. This knowledge will be of great use in the scientific prawn farming, so as to achieve high prawn production.
Resumo:
The mantis shrimp Squilla biformis is the most conspicuous and abundant stomatopod captured during benthic trawling operations off the Pacific coast of Costa Rica. Due to its abundance, this species is considered a potential fisheries resource for the region. Nevertheless, its life history is practically unknown. The present study describes the population demography, spatial distribution and behaviour of S. biformis from Pacific Costa Rica. The population was principally composed of individuals between 20 and 32 mm carapace length (CL), forming 2 age groups. Individuals of 35 to 45 mm CL and > 45 mm CL were poorly represented. We assume that larger individuals are more frequent at greater depths (probably on the continental slope), thus out of the reach of the fishing vessels used in our study. Males outnumbered females, as observed in other stomatopods. Visual evidence of their behaviour demonstrates that the adults in this species possess a benthic and pelagic life style. Largest numbers of individuals (50% of the total) were found between 240 to 260 m, the same bathymetric range that was historically occupied by commercial shrimps. This shift may be related to intense fishing activities. We observed a synchronized moulting of females and males during less luminous (third and fourth) lunar phases. The evolutionary development of a group moulting system could confer advantages to S. biformis in comparison to other stomatopods whose moulting process is individual and asynchronous.
Resumo:
Proallatotoxins, and particularly preconcenes, are exceptionally promising models for studying Rhodnius prolixus physiology and for comparison with other natural compounds with anti-hormonal activities. Effects of preconcenes on feeding, development and reproduction of R. prolixus are being detailed. The precocenes reveal significant effects on feeding, moulting cycle (inducing precocious metamorphosis and ecdysial stasis), and reproduction of these insect. The mechanism of action of proallatotoxins was discussed based on the corpus allatum cytotoxic effect and on the ecdysteroid biosynthesis in prothoracic glands and ovaries. Further studies of these compounds on R. prolixus are need and will hopefully reveal other unesplored points regarding the action of the proallatotoxins on insects.
Resumo:
Shrimp farming in Brazil is a consolidated activity, having brought economical and social gains to several states with the largest production concentrated in the northeast. This fact is also reflected in higher feed intake, necessitating a more efficient feed management. Currently, management techniques already foresee food loss due to molting. In this sense, studies relating shrimp s digestive physiology, molting physiology and behavioral response of shrimp feed can optimize the feed management. Thus, our study aimed to evaluate the behavioral response of the marine shrimp L. vannamei (Crustacea: Penaeidae) in accordance with the stages of moulting cycle and feeding schedules based on higher or lower activity of proteolytic digestive enzymes; also, to investigate the influence of feeding schedule on hepatosomatic index and non-specific and specific protease activity (trypsin). Experiments were carried out at the Laboratory of Shrimp Behavioral Studies at UFRN in partnership with the Laboratory of Enzimology UFPE. Juveniles of L. vannamei weighting 5.25 g (+ 0.25 g) were kept in aquaria at a density of 33 shrimp m -2. In the first experiment, shrimp were fed in the light phase or in the dark phase for 8 days; in the ninth day, the animals were observed for 15 minutes every hour during the 12 hours of each phase of the photoperiod. We recorded the frequency of inactivity, exploration, food intake, burrowing, swimming and crawling behavior. At the end of the 12th observation session, the shrimp were sacrified and classified by the method of setogenesis in the molt cycle stages A, B, C, D0, D1, D2 or D3. We found that the shrimp in A stage show high levels of inactivity. Moreover, the frequency of food intake was very low. The shrimp in D3 stage also had low food intake and high inactivity associated with elevated frequencies of burrowing. In the second experiment, shrimp were kept in physiological acclimation to experimental conditions for 28 days, distributed in 12 treatments in the light phase and 12 treatments in the dark phase. In the end, the animals were sacrified and dissected to assess non-specific and specific protease activity (trypsin) activity. In general, these parameters did not vary among animals fed in the light phase and those fed in the dark phase. However, significant differences were found in the activity of specific and nonspecific proteases in relation to food treatment. In the light phase, the major proteolytic activities converged to 10 hours after the start of the light phase, while the lowest activities converged to 6 hours after the beginning of this phase. In the dark phase, the highest enzyme activity converged to 12 hours after the onset of phase, while the lowest activities converged to 3 hours after the onset of phase. In the third experiment, we sought to evaluate the behavioral responses of shrimp in relation to dietary treatments based on higher or lower activity of proteolytic enzymes, considering the results of the second experiment. The behavioral categories observed were the same as the ones in the first experiment, with observations of 30 minutes (15min before and 15min after food supply). We found variation in behavioral responses as a function of the treatments, with greater intake of food in shrimp fed during the period of greatest activity of proteolytic enzymes, in the light phase. Thus we see that periodic events associated with the shrimp s physiology interfere in their behavioral responses, revealing situations that are more adjustable to the provision of food, and consequently optimizing feeding management
Resumo:
Larvae of an estuarine grapsid crab Chasmagnathus granulata Dana 1851, from temperate and subtropical regions of South America, were reared in seawater (32 ‰) at five different constant temperatures (12, 15, 18, 21, 24 °C). Complete larval development from hatching (Zoea I) to metamorphosis (Crab I) occurred in a range from 15 to 24 °C. Highest survival (60% to the first juvenile stage) was observed at 18°C, while all larvae reared at 12°C died before metamorphosis. The duration of development (D) decreased with increasing temperature (T). This relationship is described for all larval stages as a power function (linear regressions after logarithmic transformation of both D and T). The temperature-dependence of the instantaneous developmental rate (D-1) is compared among larval stages and temperatures using the Q10 coefficient (van't Hoff's equation). Through all four zoeal stages, this index tends to increase during development and to decrease with increasing T (comparing ranges 12-18, 15-21, 18-24 °C). In the Megalopa, low Q10 values were found in the range from 15 to 24 °C. In another series of experiments, larvae were reared at constant 18°C and their dry weight (W) and respiratory response to changes in T were measured in all successive stages during the intermoult period (stage C) of the moulting cycle. Both individual and weight-specific respiration (R, QO2) increased exponentially with increasing T. At each temperature, R increased significantly during growth and development through successive larval stages. No significantly different QO2 values were found in the first three zoeal stages, while a significant decrease with increasing W occurred in the Zoea IV and Megalopa. As in the temperature-dependence of D, the respiratory response to changes in temperature (Q10) depends on both the temperature range and the developmental stage, however, with different patterns. In the zoeal stages, the respiratory Q10 was minimum (1.7-2.2) at low temperatures (12-18 °C), but maximum (2.2-3.0) at 18-24 °C. The Megalopa, in contrast, showed a stronger metabolic response in the lower than in the upper temperature range (Q10 = 2.8 and 1.7, respectively). We interpret this pattern as an adaptation to a sequence of temperature conditions that should typically be encountered by C. granulata larvae during their ontogenetic migrations: hatching in and subsequent export from shallow estuarine lagoons, zoeal development in coastal marine waters, which are on average cooler, return in the Megalopa stage to warm lagoons. We thus propose that high metabolic sensitivity to changes in temperature may serve as a signal stimulating larval migration, so that the zoeae should tend to leave warm estuaries and lagoons, whereas the Megalopa should avoid remaining in the cooler marine waters and initiate its migration towards shallow coastal lagoons.
Resumo:
Pós-graduação em Aquicultura - FCAV
Resumo:
The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.
Resumo:
Schistosomiasis is a common tropical disease caused by Schistosoma species Schistosomiasis' pathogenesis is known to vary according to the worms' strain. Moreover, high parasitical virulence is directly related to eggs release and granulomatous inflammation in the host's organs. This virulence might be influenced by different classes of molecules, such as lipids. Therefore, better understanding of the metabolic profile of these organisms is necessary, especially for an increased potential of unraveling strain virulence mechanisms and resistance to existing treatments. In this report, direct-infusion electrospray high-resolution mass spectrometry (ESI(+)-HRMS) along with the lipidomic platform were employed to rapidly characterize and differentiate two Brazilian S. mansoni strains (BH and SE) in three stages of their life cycle: eggs, miracidia and cercariae, with samples from experimental animals (Swiss/SPF mice). Furthermore, urine samples of the infected and uninfected mice were analyzed to assess the possibility of direct diagnosis. All samples were differentiated using multivariate data analysis, PCA, which helped electing markers from distinct lipid classes; phospholipids, diacylglycerols and triacylglycerols, for example, clearly presented different intensities in some stages and strains, as well as in urine samples. This indicates that biochemical characterization of S. mansoni may help narrowing-down the investigation of new therapeutic targets according to strain composition and aggressiveness of disease. Interestingly, lipid profile of infected mice urine varies when compared to control samples, indicating that direct diagnosis of schistosomiasis from urine may be feasible.
Resumo:
The role of key cell cycle regulation genes such as, CDKN1B, CDKN2A, CDKN2B, and CDKN2C in sporadic medullary thyroid carcinoma (s-MTC) is still largely unknown. In order to evaluate the influence of inherited polymorphisms of these genes on the pathogenesis of s-MTC, we used TaqMan SNP genotyping to examine 45 s-MTC patients carefully matched with 98 controls. A multivariate logistic regression analysis demonstrated that CDKN1B and CDKN2A genes were related to s-MTC susceptibility. The rs2066827*GT+GG CDKN1B genotype was more frequent in s-MTC patients (62.22%) than in controls (40.21%), increasing the susceptibility to s-MTC (OR=2.47; 95% CI=1.048-5.833; P=0.038). By contrast, the rs11515*CG+GG of CDKN2A gene was more frequent in the controls (32.65%) than in patients (15.56%), reducing the risk for s-MTC (OR=0.174; 95% CI=0.048-0.627; P=0.0075). A stepwise regression analysis indicated that two genotypes together could explain 11% of the total s-MTC risk. In addition, a relationship was found between disease progression and the presence of alterations in the CDKN1A (rs1801270), CDKN2C (rs12885), and CDKN2B (rs1063192) genes. WT rs1801270 CDKN1A patients presented extrathyroidal tumor extension more frequently (92%) than polymorphic CDKN1A rs1801270 patients (50%; P=0.0376). Patients with the WT CDKN2C gene (rs12885) presented larger tumors (2.9±1.8 cm) than polymorphic patients (1.5±0.7 cm; P=0.0324). On the other hand, patients with the polymorphic CDKN2B gene (rs1063192) presented distant metastases (36.3%; P=0.0261). In summary, we demonstrated that CDKN1B and CDKN2A genes are associated with susceptibility, whereas the inherited genetic profile of CDKN1A, CDKN2B, and CDKN2C is associated with aggressive features of tumors. This study suggests that profiling cell cycle genes may help define the risk and characterize s-MTC aggressiveness.
Resumo:
OBJECTIVE: To analyze the amount of glycosaminoglycans in the uterine cervix during each phase of the rat estrous cycle. DESIGN: Based on vaginal smears, forty female, regularly cycling rats were divided into four groups (n = 10 for each group): GI - proestrous, GII - estrous, GIII - metaestrous and GIV - diestrous. Animals were sacrificed at each phase of the cycle, and the cervix was immediately removed and submitted to biochemical extraction and determination of sulfated glycosaminoglycans and hyaluronic acid. The results were analyzed by ANOVA followed by the Bonferroni post-hoc test. RESULTS: The uterine cervix had the highest amount of total sulfated glycosaminoglycans and dermatan sulfate during the estrous phase (8.90 ± 0.55 mg/g of cetonic extract, p<0.001; and 8.86 ± 0.57 mg/g of cetonic extract, p<0.001). In addition, there was more heparan sulfate at the cervix during the proestrous phase (0.185 ± 0.03 mg/g of cetonic extract) than during any other phase (p<0.001). There were no significant changes in the concentration of hyaluronic acid in the uterine cervix during the estrous cycle. CONCLUSION: Our data suggest that the amount of total sulfated glycosaminoglycans may be influenced by hormonal fluctuations related to the estrous cycle, with dermatan sulfate and heparan sulfate being the glycosaminoglycans most sensitive to hormonal change.
Resumo:
The survival, absolute population size, gonotrophic cycle duration, and temporal and spatial abundance of Nyssomyia neivai (Pinto) were studied in a rural area endemic for American cutaneous leishmaniasis (ACL) in Conchal, Sõo Paulo State, southeastern Brazil, using mark-release-recapture techniques and by monitoring population fluctuation. The monthly abundance exhibited a unimodal pattern, with forest and domicile habitats having the highest relative abundances. A total of 1,873 males and 3,557 females were marked and released during the six experiments, of which 4.1-13.0 per cent of males and 4.1-11.8 per cent of females were recaptured. Daily survivorship estimated from the decline in recaptures per day was 0.681 for males and 0.667 for females. Gonotrophic cycle duration was estimated to be 4.0 d. Absolute population size was calculated using the Lincoln Index and ranged from 861 to 4,612 males and from 2,187 to 19,739 females. The low proportion of females that reach the age when they are potentially infective suggests that N. neivai has a low biological capacity to serve as a vector and that factors such as high biting rates and opportunistic feeding behavior would be needed to enable Leishmania (Viannia) braziliensis Vianna transmission. This agreed with the epidemiological pattern of ACL in southeastern Brazil that is characterized by low incidence, with isolated cases acquired principally within domiciliary habitats
Resumo:
We describe growth, longevity, sex ratio, reproductive period, and recruitment of Aegla paulensis from Jaragua Stale Park, Sao Paulo, Brazil (23 degrees 27'27.9 '' S; 46 degrees 45'32.3 '' W). The population was sampled monthly (September 2007 through August 2009) with the aid of traps. Over five thousand individuals were captured, sexed, measured (carapace length = CL) and inspected for reproductive traits (females only), and then released back to the sampling site. The pattern of the reproductive cycle was strongly seasonal (austral mid autumn through late winter), with a single recruitment pulse per year. The obtained von Bertalanffy growth equations were CL = 21.25[1-e(-0.041(t + 1.250))] and CL = 16.52[1-e(-0.049(t + 1.823))] for males and females, respectively. Males (mean CL +/- SD = 11.86 +/- 2.79 mm) attain larger sizes than females (mean CL +/- SD = 10.84 +/- 2.36 mm). Aegla paulensis reproduces twice during an estimated life span of 40.2 months for females and 33.9 months for males. Temporal variation of sex ratio showed a distinctive pattern characterized by a sequence of three distinct periods that repeated from one year to another, and which suggested that a behavioral component influence the proportion of sex in adult specimens sampled with traps during reproductive and non-reproductive periods.
Resumo:
Background: Life cycles of medusozoan cnidarians vary widely, and have been difficult to document, especially in the most recently proposed class Staurozoa. However, molecular data can be a useful tool to elucidate medusozoan life cycles by tying together different life history stages. Methodology/Principal Findings: Genetic data from fast-evolving molecular markers (mitochondrial 16S, nuclear ITS1, and nuclear ITS2) show that animals that were presumed to be a hydrozoan, Microhydrula limopsicola (Limnomedusae, Microhydrulidae), are actually an early stage of the life cycle of the staurozoan Haliclystus antarcticus (Stauromedusae, Lucernariidae). Conclusions/Significance: Similarity between the haplotypes of three markers of Microhydrula limopsicola and Haliclystus antarcticus settles the identity of these taxa, expanding our understanding of the staurozoan life cycle, which was thought to be more straightforward and simple. A synthetic discussion of prior observations makes sense of the morphological, histological and behavioral similarities/congruence between Microhydrula and Haliclystus. The consequences are likely to be replicated in other medusozoan groups. For instance we hypothesize that other species of Microhydrulidae are likely to represent life stages of other species of Staurozoa.45