1000 resultados para Mould materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this present work attempts have been made to study the glass transition temperature of alternative mould materials by using both microwave heating and conventional oven heating. In this present work three epoxy resins, namely R2512, R2515 and R2516, which are commonly used for making injection moulds have been used in combination with two hardeners H2403 and H2409. The magnetron microwave generator used in this research is operating at a frequency of 2.45 GHz with a hollow rectangular waveguide. In order to distinguish the effects between the microwave and conventional heating, a number of experiments were performed to test their mechanical properties such as tensile and flexural strengths. Additionally, differential scanning calorimeter technique was implemented to measure the glass transition temperature on both microwave and conventional heating. This study provided necessary evidences to establish that microwave heated mould materials resulted with higher glass transition temperature than the conventional heating. Finally, attempts were also made to study the microstructure of microwave-cured materials by using a scanning electron microscope in order to analyze the morphology of cured specimens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A methodology for evaluating the reactivity of titanium with mould materials during casting has been developed. Microhardness profiles and analysis of oxygen contamination have provided an index for evaluation of the reactivity of titanium. Microhardness profile delineates two distinct regions, one of which is characterised by a low value of hardness which is invariant with distance. The reaction products are uniformly distributed in the metal in this region. The second is characterised by a sharp decrease in microhardness with distance from the metal-mould interface. It represents a diffusion zone for solutes that dissolve into titanium from the mould. The qualitative profiles for contaminants determined by scanning electron probe microanalyser and secondary ion mass spectroscopy in the as-cast titanium were found to be similar to that of microhardness, implying that microhardness can be considered as an index of the contamination resulting from metal-mould reaction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microwave heating technology is a cost-effective alternative way for heating and curing of used in polymer processing of various alternate materials. The work presented in this paper addresses the attempts made by the authors to study the glass transition temperature and curing of materials such as casting resins R2512, R2515 and laminating resin GPR 2516 in combination with two hardeners ADH 2403 and ADH 2409. The magnetron microwave generator used in this research is operating at a frequency of 2.45 GHz with a hollow rectangular waveguide. During this investigation it has been noted that microwave heated mould materials resulted with higher glass transition temperatures and better microstructure. It also noted that Microwave curing resulted in a shorter curing time to reach the maximum percentage cure. From this study it can be concluded that microwave technology can be efficiently and effectively used to cure new generation alternate polymer materials for manufacture of injection moulds in a rapid and efficient manner. Microwave curing resulted in a shorter curing time to reach the maximum percentage cure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titaniuni and its alloys have many applications in aerospace, marine and other engineering industries. Titanium requires special melting techniques because of its high reactivity at elevated temperatures and needs special mould materials and methods for castings. This paper reviews the development of titanium casting technology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel processing method for the fast and economic production of hollow ceramic components has been developed by combining in situ coagulation moulding with a modified version of the technique of rotary moulding[Binner, J. G. P., Al-Dawery, I. A., Tari, G. and Yan, Y., Rotary casting technique. UK Patent application No. 0506349.0, March 2005], the latter being adapted from the polymer industry. The process was found to require a high solids content suspension, hence development work was performed in this direction though in the end a new, commercial suspension was utilised. Of the three forming routes of gel casting, direct coagulation casting and in situ coagulation moulding, the latter was found to be the most promising for the new process of rotary moulding of ceramics. Due to the low value of clay-based ceramics, a new low cost coagulant was identified and the effect of lactone concentration and temperature on setting time determined. Following substantial optimisation work, it was found that a two-speed approach to multi-axial rotation was the most successful; medium sized cream jugs could be produced in just 7 min. With respect to mould materials, the porous resin normally used for pressure casting of sanitary ware was found to be the best option, though since this is quite expensive conventional plaster-of-paris moulds were found to be a suitable material to enable companies, particularly SMEs, to become familiar with the technology whilst avoiding high costs for trials. The processed articles could be successfully fired and glazed using gas-fired kilns with no sign of any black cores. Major advantages of the process include the ability to precisely calculate the amount of ceramic slip required, eliminating either slip wastage or the need to pour used slip back into the virgin material as currently happens with slip casting. In addition, since the precursor suspension has a very high solids content, the time and energy required to dry the green product and associated moulds has been considerably reduced. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wear resistance of high chromium iron is well recorded. However, the same is not the case as regards the use of manganese at higher percentages in high chromium irons and its influence on wear behaviour. Hence, this work highlights the slurry wear characteristics of chromium 16–19%) iron following the introduction of manganese at two levels i.e. 5 and 10%. It is known that the wear properties are dictated by the microstructural features. To alter the structure, the cooling rate of casting has been varied by adopting two different types of moulds (i.e. sand and metal) and subsequently subjecting to thermal treatment. The as-cast and heat treated samples are examined for microstructure and then evaluated for hardness and slurry erosion properties. As the manganese content is increased from 5 to 10%, the hardness showed a decrease in value both in the as-cast and heat treated conditions. The slurry erosion loss, expectedly, showed an increase irrespective of the sample condition (i.e. mould type/heat treatment adopted). The findings are corroborated with the microstructural features obtained through optical and scanning electron microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abrasion and slurry erosion behaviour of chromium-manganese iron samples with chromium (Cr) in the range similar to 16-19% and manganese (Mn) at 5 and 10% levels have been characterized for hardness followed by microstructural examination using optical and scanning electron microscopy. Positron lifetime studies have been conducted to understand the defects/microporosity influence on the microstructure. The samples were heat treated and characterized to understand the structural transformations in the matrix. The data reveals that hardness decreased with increase in Mn content from 5 to 10% in the first instance and then increase in the section size in the other case, irrespective of the sample conditions. The abrasion and slurry erosion losses show increase with increase in the section size as well as with increase in Mn content. The positron results show that as hardness increases from as-cast to heat treated sample, the positron trapping rate and hence defect concentration showed opposite trend as expected. So a good correlation between defects concentration and the hardness has been observed. These findings also corroborate well with the microstructural features obtained from optical and scanning electron microscopy. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analytical short time solution of moving boundary in heat conduction in a cylindrical mould under prescribed flux boundary condition has been studied in this paper. Partial differential equations are converted to integro-differential equations. These integro-differential equations which are coupled have been solved analytically for short time by choosing suitable series expansions for the unknown quantitities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal-mold reaction during Ti casting in zircon sand molds has been studied using scanning electron microscope, energy and wave length dispersive analysis of X-rays, X-ray diffraction, microhardness measurements, and chemical analysis. Experimental results suggest that oxides from the mold are not fully leached out by liquid Ti, but oxygen is preferentially transferred to liquid Ti, leaving behind metallic constituents in the mold as lower oxides or intermetallics of Ti. The electron microprobe analysis has revealed the depth profile of contaminants from the mold into the cast Ti metal. The elements Si, Zr and O were found to have diffused to a considerable distance within the Ti metals. A possible mechanism has now been evolved in regard to the reactions that occur during casting of Ti in zircon sand molds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During free surface moulding processes such as thermoforming and blow moulding heated polymer materials are subjected to rapid biaxial deformation as they are drawn into the shape of a mould. In the development of process simulations it is therefore essential to be able to accurately measure and model this behaviour. Conventional uniaxial test methods are generally inadequate for this purpose and this has led to the development of specialised biaxial test rigs. In this paper the results of several programmes of biaxial tests conducted at Queen’s University are presented and discussed. These have included tests on high impact polystyrene (HIPS), polypropylene (PP) and aPET, and the work has involved a wide variety of experimental conditions. In all cases the results clearly demonstrate the unique characteristics of materials when subjected to biaxial deformation. PP draws the highest stresses and it is the most temperature sensitive of the materials. aPET is initially easier to form but exhibits strain hardening at higher strains. This behaviour is increased with increasing strain rate but at very high strain rates these effects are increasingly mollified by adiabatic heating. Both aPET and PP (to a lesser degree) draw much higher stresses in sequential stretching showing that this behaviour must be considered in process simulations. HIPS showed none of these effects and it is the easiest material to deform.