911 resultados para Motori a combustione interna, Simulazione, Metodo delle caratteristiche, Sovralimentazione
Resumo:
In questo lavoro verrà analizzato lo sviluppo di una nuova modellazione matematica per la simulazione della dinamica del flusso all’interno del sistema di aspirazione per motori sovralimentati. Tale modellazione si basa sulla risoluzione numerica mediante la formulazione proposta da Courant, Isaacson e Rees (CIR) nel 1952 per il set delle equazioni non conservative di Eulero per il caso monodimensionale. L’applicazione attraverso il software Matlab-Simulink di tali discretizzazioni numeriche garantisce la possibilità di calcolare la dinamica del flusso all’interno del condotto. L’innovazione proposta da questo lavoro consiste nel considerare l’intero stato da iterare come un vettore, permettendo di gestire parte delle operazioni da compiere con delle matrici. Questo approccio è stato adottato sia per una maggior velocità di calcolo, sia per rendere più agevole la modifica della geometria, ad esempio in fase di progettazione. La routine di lancio del nuovo modello, infatti, gestirà autonomamente la scrittura delle matrici, a partire dai pochi parametri necessari per la definizione della geometria all’interno del codice. Si andranno quindi a presentare i passaggi più importanti che hanno portato alla scrittura del codice, con particolare attenzione poi alla fase di validazione del modello. Essa sarà basata sia su un altro codice presente in letteratura, modellato anch’esso attraverso risoluzione CIR, sia mediante dati sperimentali utilizzati per la validazione di tale implementazione. Seguirà infine un’analisi dettagliata sui fattori che influenzano, positivamente e negativamente, l’esito delle simulazioni realizzate, come la discretizzazione spaziale e quella temporale, prestando sempre particolare attenzione alla stabilità del metodo.
Resumo:
Modern Internal Combustion Engines are becoming increasingly complex in terms of their control systems and strategies. The growth of the algorithms’ complexity results in a rise of the number of on-board quantities for control purposes. In order to improve combustion efficiency and, simultaneously, limit the amount of pollutant emissions, the on-board evaluation of two quantities in particular has become essential; namely indicated torque produced by the engine and the angular position where 50% of fuel mass injected over an engine cycle is burned (MFB50). The above mentioned quantities can be evaluated through the measurement of in-cylinder pressure. Nonetheless, at the time being, the installation of in-cylinder pressure sensors on vehicles is extremely uncommon mainly because of measurement reliability and costs. This work illustrates a methodological approach for the estimation of indicated torque and MFB50 that is based on the engine speed fluctuation measurement. This methodology is compatible with the typical on-board application restraints. Moreover, it requires no additional costs since speed can be measured using the system already mounted on the vehicle, which is made of a magnetic pick-up faced to a toothed wheel. The estimation algorithm consists of two main parts: first, the evaluation of indicated torque fluctuation based on speed measurement and secondly, the evaluation of the mean value of the indicated torque (over an engine cycle) and MFB50 by using the relationship with the indicated torque harmonic and other engine quantities. The procedure has been successfully applied to an L4 turbocharged Diesel engine mounted on-board a vehicle.
Resumo:
Valutazione di software open source per la simulazione di banchi di flussaggio stazionari. Analisi dei risultati e confronto con dati sperimentali e con dati ottenuti da un software commerciale. Il toolbox usato è OpenFOAM.
Resumo:
Nell'ambito dei motori ad accensione comandata, la comprensione del processo di accensione e delle prime fasi di sviluppo del kernel è di primaria importanza per lo studio dell'intero processo di combustione, dal momento che questi determinano lo sviluppo successivo del fronte di fiamma. Dal punto di vista fisico, l'accensione coinvolge un vasto numero di fenomeni di natura molto complessa, come processi di ionizzazione e passaggio di corrente nei gas: molti di questi avvengono con tempi caratteristici che ne impediscono la simulazione tramite le attuali tecniche CFD. Si rende pertanto necessario sviluppare modelli semplificati che possano descrivere correttamente il fenomeno, a fronte di tempi di calcolo brevi. In quest'ottica, il presente lavoro di tesi punta a fornire una descrizione accurata degli aspetti fisici dell'accensione, cercando di metterne in evidenza gli aspetti principali e le criticità. A questa prima parte di carattere prettamente teorico, segue la presentazione del modello di accensione sviluppato presso il DIN dell'Università di Bologna dal Prof. Bianche e dall'Ing. Falfari e la relativa implementazione tramite il nuovo codice CONVERGE CFD: la validazione è infine condotta riproducendo un caso test ben noto il letteratura, che mostrerà un buon accordo tra valori numerici e sperimentali a conferma della validità del modello.
Resumo:
A wall film model has been implemented in a customized version of KIVA code developed at University of Bologna. Under the hypothesis of `thin laminar ow' the model simulates the dynamics of a liquid wall film generated by impinging sprays. Particular care has been taken in numerical implementation of the model. The major phenomena taken into account in the present model are: wall film formation by impinging spray; body forces, such as gravity or acceleration of the wall; shear stress at the interface with the gas and no slip condition on the wall; momentum contribution and dynamic pressure generated by the tangential and normal component of the impinging drops; film evaporation by heat exchange with wall and surrounding gas. The model doesn't consider the effect of the wavy film motion and suppose that all the impinging droplets adhere to the film. The governing equations have been integrated in space by using a finite volume approach with a first order upwind differencing scheme and they have been integrated in time with a fully explicit method. The model is validated using two different test cases reproducing PFI gasoline and DI Diesel engine wall film conditions.
Resumo:
Si vuole dimostrare la fattibilità di realizzazione di una serie di misuratori di portata fluidi da applicare principalmente per le misure di portata dei fluidi di un motore in prova al banco. Queste portate di interesse riguardano: liquido di raffreddamento, tipicamente acqua a una temperatura prossima ai 100°C, olio lubrificante, tipicamente ad una temperatura di 150°C, aria di aspirazione, BlowBy, aria che filtra dalle fasce elastiche e dalla camera di combustione passa in coppa e quindi presenta goccioline e vapori d'olio, e possibilmente EGR. La prima fase consiste nel valutare ciò che offre il mercato per rendersi conto di quali sono i livelli di prestazione di misura dei sensori commerciali e il loro prezzo. Dunque, oltre alla consultazione di datasheet, segue una richiesta di preventivi ai fornitori di tali prodotti. Conclusa la fasce di analisi di mercato sopra descritta si avvia la fase di design del misuratore. Dopo l'analisi il principio di misura ottimale risulta quello ultrasonico. In particolare è opportuno effettuare una prima distinzione fra misuratori per liquidi e per gas, i quali naturalmente presenteranno differenze geometriche sia per la compatibilità con l'impianto nel quale verranno montati sia per le caratteristiche del fluido di cui interessa la misura. Disegnata a CAD la geometria i due tubi vengono stampati in 3D, dopodichè vengono montati i trasduttori per la generazione e la ricezione degli ultrasuoni. Si effettuano le prove di laboratorio, per liquidi e poi per gas, nel primo caso misurando la portata acqua messa in circolo da una pompa, nel secondo caso misurando la portata aria di un Ducati al banco motori. I dati acquisiti da varie prove vengono poi elaborati tramite Matlab, e si ricavano conclusioni in termini di rumore, accuratezza, ripetibilità ed infine di conferma che è fattibile realizzarli ad un costo contenuto ma che per riuscirci è necessario molto più sviluppo e ottimizzazione.
Modellistica di accensione per candele ad arco elettrico in motori a combustione interna alternativi
Resumo:
Nel panorama mondiale di contenimento delle emissioni inquinanti in atmosfera é divenuto sempre più importante limitare la parte derivante dai motori a combustione interna: l'utilizzo di motori GDI a carica stratificata e di ricircolo dei gas di scarico (EGR) sono esempi di tecnologie pensate proprio in tale ottica. Sia la presenza di un ambiente magro che di EGR nel cilindro, come anche l'aumento della pressione nel cilindro per l'incremento della pressione di sovralimentazione o del rapporto di compressione, hanno lo svantaggio di limitare la velocità di combustione e rendere più sfavorevoli le condizioni di accensione della miscela; in questo scenario diviene di fondamentale importanza il miglioramento dei sistemi di accensione, la creazione di modelli volti a simularli e la comprensione dei fenomeni che ne stanno alla base. Il seguente lavoro di tesi si inserisce proprio in questo contesto, indagando le varie fasi di cui si compone il fenomeno dell'accensione e le relazioni che legano le variabili di interesse fisico, verificate sulla base di evidenze sperimentali. Successivamente vengono analizzati i principali modelli d'accensione che sono stati proposti e implementati in codici computazionali fluidodinamici; l'analisi mette in luce le differenze, i punti di forza e le semplificazioni introdotte in ognuno di essi, in modo da poterli valutare criticamente. La suddetta analisi é anche utile per introdurre il modello frutto del lavoro del gruppo di ricerca dell'Università di Bologna; ci si concentra particolarmente su quest'ultimo poiché un obiettivo di questo lavoro di tesi é stato proprio l'implementazione e l'utilizzo del modello in un codice fluidodinamico tridimensionale quale CONVERGE CFD. L'implementazione é stata poi validata attraverso simulazioni su una geometria reale di un motore a combustione interna ad elevate prestazioni, confrontando i risultati ottenuti con il nuovo modello rispetto ai dati sperimentali sulla combustione.
Resumo:
L’elaborato affronta la tematica della detonazione nel motore a combustione interna, al fine di individuare un modello che sia in grado di riprodurre il fenomeno in modo accurato, con la prospettiva di un uso a scopo predittivo. A tal proposito vengono presentati modelli basati su svariate metodologie: in particolar modo, accanto ai metodi basati sulle grandezze direttamente o indirettamente misurabili del motore ad accensione comandata, vengono presentati un metodo basato sull’applicazione delle reti neurali, una metodologia di controllo basata sull’approccio True Digital Control, e due metodi che si avvalgono di procedimenti di tipo puramente statistico (metodo dei minimi quadrati e metodo Monte Carlo) per ricavare alcune delle grandezze fondamentali per il calcolo della detonazione. Successivamente, dopo una breve parentesi sulle simulazioni di tipo 3D, vengono introdotti i modelli fisici zero-dimensionali. Uno di questi, basato su un indice (definito dal simbolo Kn) capace di dare una valutazione quantitativa del fenomeno, viene applicato ad un insieme di dati sperimentali provenienti dai test al banco di un motore Ducati 1200. I risultati dell’analisi vengono confrontati con le evidenze sperimentali, sottolineando la buona rispondenza delle simulazioni ad essi e di conseguenza la potenzialità di tali metodi, computazionalmente non onerosi e di rapida applicazione.
Resumo:
I moderni motori a combustione interna diventano sempre più complessi L'introduzione della normativa antinquinamento EURO VI richiederà una significativa riduzione degli inquinanti allo scarico. La maggiore criticità è rappresentata dalla riduzione degli NOx per i motori Diesel da aggiungersi a quelle già in vigore con le precedenti normative. Tipicamente la messa a punto di una nuova motorizzazione prevede una serie di test specifici al banco prova. Il numero sempre maggiore di parametri di controllo della combustione, sorti come conseguenza della maggior complessità meccanica del motore stesso, causa un aumento esponenziale delle prove da eseguire per caratterizzare l'intero sistema. L'obiettivo di questo progetto di dottorato è quello di realizzare un sistema di analisi della combustione in tempo reale in cui siano implementati diversi algoritmi non ancora presenti nelle centraline moderne. Tutto questo facendo particolare attenzione alla scelta dell'hardware su cui implementare gli algoritmi di analisi. Creando una piattaforma di Rapid Control Prototyping (RCP) che sfrutti la maggior parte dei sensori presenti in vettura di serie; che sia in grado di abbreviare i tempi e i costi della sperimentazione sui motopropulsori, riducendo la necessità di effettuare analisi a posteriori, su dati precedentemente acquisiti, a fronte di una maggior quantità di calcoli effettuati in tempo reale. La soluzione proposta garantisce l'aggiornabilità, la possibilità di mantenere al massimo livello tecnologico la piattaforma di calcolo, allontanandone l'obsolescenza e i costi di sostituzione. Questa proprietà si traduce nella necessità di mantenere la compatibilità tra hardware e software di generazioni differenti, rendendo possibile la sostituzione di quei componenti che limitano le prestazioni senza riprogettare il software.
Resumo:
Nel panorama motoristico ed automobilistico moderno lo sviluppo di motori a combustione interna e veicoli è fortemente influenzato da diverse esigenze che spesso sono in contrasto le une con le altre. Infatti gli obiettivi di economicità e riduzione dei costi riguardanti la produzione e la commercializzazione dei prodotti sono in contrasto con gli sforzi che devono essere operati dalle case produttrici per soddisfare le sempre più stringenti normative riguardanti le emissioni inquinanti ed i consumi di carburante dei veicoli. Fra le numerose soluzioni presenti i veicoli ibridi rappresentano una alternativa che allo stato attuale è già presente sul mercato in varie forme, a seconda della tipologie di energie accoppiate. In letteratura è possibile trovare numerosi studi che trattano l’ottimizzazione dei componenti o delle strategie di controllo di queste tipologie di veicoli: in moltissimi casi l’obiettivo è quello di minimizzare consumi ed emissioni inquinanti. Normalmente non viene posta particolare attenzione agli effetti che l’aggiunta delle macchine elettriche e dei componenti necessari per il funzionamento delle stesse hanno sulla dinamica del veicolo. Il presente lavoro di tesi è incentrato su questi aspetti: si è considerata la tipologia di veicoli ibridi termici-elettrici di tipo parallelo andando ad analizzare come cambiasse il comportamento dinamico del veicolo in funzione del tipo di installazione considerato per la parte elettrica del powertrain. In primo luogo è stato quindi necessario costruire ed implementare un modello dinamico di veicolo che permettesse di applicare coppie alle quattro ruote in maniera indipendente per considerare diverse tipologie di powertrain. In seguito si sono analizzate le differenze di comportamento dinamico fra il veicolo considerato e l’equivalente versione ibrida e i possibili utilizzi delle macchine elettriche per correggere eventuali deterioramenti o cambiamenti indesiderati nelle prestazioni del veicolo.
Resumo:
Obiettivo di questo elaborato è quello di provvedere alla elaborazione dei dati geometrici necessari alla modellazione dei condotti di aspirazione e scarico di un motore 4 cilindri turbo benzina ad iniezione diretta (GDI) disponibile a banco prove. I dati sperimentali raccolti sono stati elaborati e sintetizzati, con lo scopo di fare avvicinare il più possibile le caratteristiche del modello a quelle del sistema a banco (cercando dunque di rendere il modello il più veritiero possibile). In primo luogo, saranno descritte le principali caratteristiche dei motori a combustione interna, con particolare enfasi rivolta ai componenti ed ai processi che caratterizzano i motori turbo GDI. In un secondo momento, sarà descritto come si è proceduto nella raccolta dei dati necessari alla modellazione e nell’elaborazione degli stessi. Il software cui l’elaborazione dei dati necessari alla modellazione è stata rivolta è GT-Suite, prodotto da Gamma Technologies e largamente utilizzato dalla maggior parte delle aziende del settore automotive.
Resumo:
Il traffico veicolare è la principale fonte antropogenica di NOx, idrocarburi (HC) e CO e, dato che la sostituzione dei motori a combustione interna con sistemi alternativi appare ancora lontana nel tempo, lo sviluppo di sistemi in grado di limitare al massimo le emissioni di questi mezzi di trasporto riveste un’importanza fondamentale. Sfortunatamente non esiste un rapporto ottimale aria/combustibile che permetta di avere basse emissioni, mentre la massima potenza ottenibile dal motore corrisponde alle condizioni di elevata formazione di CO e HC. Gli attuali sistemi di abbattimento permettono il controllo delle emissioni da sorgenti mobili tramite una centralina che collega il sistema di iniezione del motore e la concentrazione di ossigeno del sistema catalitico (posto nella marmitta) in modo da controllare il rapporto aria/combustibile (Fig. 1). Le marmitte catalitiche per motori a benzina utilizzano catalizzatori “three way” a base di Pt/Rh supportati su ossidi (allumina, zirconia e ceria), che, dovendo operare con un rapporto quasi stechiometrico combustibile/comburente, comportano una minore efficienza del motore e consumi maggiori del 20-30% rispetto alla combustione in eccesso di ossigeno. Inoltre, questa tecnologia non può essere utilizzata nei motori diesel, che lavorano in eccesso di ossigeno ed utilizzano carburanti con un tenore di zolfo relativamente elevato. In questi ultimi anni è cresciuto l’interesse per il controllo delle emissioni di NOx da fonti veicolari, con particolare attenzione alla riduzione catalitica in presenza di un eccesso di ossigeno, cioè in condizioni di combustione magra. Uno sviluppo recente è rappresentato dai catalizzatori tipo “Toyota” che sono basati sul concetto di accumulo e riduzione (storage/reduction), nei quali l’NO viene ossidato ed accumulato sul catalizzatore come nitrato in condizioni di eccesso di ossigeno. Modificando poi per brevi periodi di tempo le condizioni di alimentazione da ossidanti (aria/combustibile > 14,7 p/p) a riducenti (aria/combustibile < 14,7 p/p) il nitrato immagazzinato viene ridotto a N2 e H2O. Questi catalizzatori sono però molto sensibili alla presenza di zolfo e non possono essere utilizzati con i carburanti diesel attualmente in commercio. Obiettivo di questo lavoro di tesi è stato quello di ottimizzare e migliorare la comprensione del meccanismo di reazione dei catalizzatori “storage-reduction” per l’abbattimento degli NOx nelle emissioni di autoveicoli in presenza di un eccesso di ossigeno. In particolare lo studio è stato focalizzato dapprima sulle proprietà del Pt, fase attiva nei processi di storage-reduction, in funzione del tipo di precursore e sulle proprietà e composizione della fase di accumulo (Ba, Mg ed una loro miscela equimolare) e del supporto (γ-Al2O3 o Mg(Al)O). Lo studio è stato inizialmente focalizzato sulle proprietà dei precursori del Pt, fase attiva nei processi di storage-reduction, sulla composizione della fase di accumulo (Ba, Mg ed una loro miscela equimolare) e del supporto (γ-Al2O3 o Mg(Al)O). E’ stata effettuata una dettagliata caratterizzazione chimico-fisica dei materiali preparati tramite analisi a raggi X (XRD), area superficiale, porosimetria, analisi di dispersione metallica, analisi in riduzione e/o ossidazione in programmata di temperatura (TPR-O), che ha permesso una migliore comprensione delle proprietà dei catalizzatori. Vista la complessità delle miscele gassose reali, sono state utilizzate, nelle prove catalitiche di laboratorio, alcune miscele più semplici, che tuttavia potessero rappresentare in maniera significativa le condizioni reali di esercizio. Il comportamento dei catalizzatori è stato studiato utilizzando differenti miscele sintetiche, con composizioni che permettessero di comprendere meglio il meccanismo. L’intervallo di temperatura in cui si è operato è compreso tra 200-450°C. Al fine di migliorare i catalizzatori, per aumentarne la resistenza alla disattivazione da zolfo, sono state effettuate prove alimentando in continuo SO2 per verificare la resistenza alla disattivazione in funzione della composizione del catalizzatore. I principali risultati conseguiti possono essere così riassunti: A. Caratteristiche Fisiche. Dall’analisi XRD si osserva che l’impregnazione con Pt(NH3)2(NO2)2 o con la sospensione nanoparticellare in DEG, non modifica le proprietà chimico-fisiche del supporto, con l’eccezione del campione con sospensione nanoparticellare impregnata su ossido misto per il quale si è osservata sia la segregazione del Pt, sia la presenza di composti carboniosi sulla superficie. Viceversa l’impregnazione con Ba porta ad una significativa diminuzione dell’area superficiale e della porosità. B. Caratteristiche Chimiche. L’analisi di dispersione metallica, tramite il chemiassorbimento di H2, mostra per i catalizzatori impregnati con Pt nanoparticellare, una bassa dispersione metallica e di conseguenza elevate dimensioni delle particelle di Pt. I campioni impregnati con Pt(NH3)2(NO2)2 presentano una migliore dispersione. Infine dalle analisi TPR-O si è osservato che: Maggiore è la dispersione del metallo nobile maggiore è la sua interazione con il supporto, L’aumento della temperatura di riduzione del PtOx è proporzionale alla quantità dei metalli alcalino terrosi, C. Precursore Metallo Nobile. Nelle prove di attività catalitica, con cicli ossidanti e riducenti continui in presenza ed in assenza di CO2, i catalizzatori con Pt nanoparticellare mostrano una minore attività catalitica, specie in presenza di un competitore come la CO2. Al contrario i catalizzatori ottenuti per impregnazione con la soluzione acquosa di Pt(NH3)2(NO2)2 presentano un’ottima attività catalitica, stabile nel tempo, e sono meno influenzabili dalla presenza di CO2. D. Resistenza all’avvelenamento da SO2. Il catalizzatore di riferimento, 17Ba1Pt/γAl2O3, mostra un effetto di avvelenamento con formazione di solfati più stabili che sul sistema Ba-Mg; difatti il campione non recupera i valori iniziali di attività se non dopo molti cicli di rigenerazione e temperature superiori ai 300°C. Per questi catalizzatori l’avvelenamento da SO2 sembra essere di tipo reversibile, anche se a temperature e condizioni più favorevoli per il 1.5Mg8.5Ba-1Pt/γAl2O3. E. Capacità di Accumulo e Rigenerabilità. Tramite questo tipo di prova è stato possibile ipotizzare e verificare il meccanismo della riduzione. I catalizzatori ottenuti per impregnazione con la soluzione acquosa di Pt(NH3)2(NO2)2 hanno mostrato un’elevata capacità di accumulo. Questa è maggiore per il campione bimetallico (Ba-Mg) a T < 300°C, mentre per il riferimento è maggiore per T > 300°C. Per ambedue i catalizzatori è evidente la formazione di ammoniaca, che potrebbe essere utilizzata come un indice che la riduzione dei nitrati accumulati è arrivata al termine e che il tempo ottimale per la riduzione è stato raggiunto o superato. Per evitare la formazione di NH3, sul catalizzatore di riferimento, è stata variata la concentrazione del riducente e la temperatura in modo da permettere alle specie adsorbite sulla superficie e nel bulk di poter raggiungere il Pt prima che l’ambiente diventi troppo riducente e quindi meno selettivo. La presenza di CO2 riduce fortemente la formazione di NH3; probabilmente perché la CO2, occupando i siti degli elementi alcalino-terrosi lontani dal Pt, impedisce ai nitriti/nitrati o all’H2 attivato di percorrere “elevate” distanze prima di reagire, aumentando così le possibilità di una riduzione più breve e più selettiva. F. Tempo di Riduzione. Si è migliorata la comprensione del ruolo svolto dalla concentrazione dell’agente riducente e dell’effetto della durata della fase riducente. Una durata troppo breve porta, nel lungo periodo, alla saturazione dei siti attivi, un eccesso alla formazione di NH3 Attraverso queste ultime prove è stato possibile formulare un meccanismo di reazione, in particolare della fase riducente. G. Meccanismo di Riduzione. La mobilità dei reagenti, nitriti/nitrati o H2 attivato è un elemento fondamentale nel meccanismo della riduzione. La vicinanza tra i siti di accumulo e quelli redox è determinante per il tipo di prodotti che si possono ottenere. La diminuzione della concentrazione del riducente o l’aumento della temperatura concede maggiore tempo o energia alle specie adsorbite sulla superficie o nel bulk per migrare e reagire prima che l’ambiente diventi troppo riducente e quindi meno selettivo.