852 resultados para Motor vehicle fleets Management
Resumo:
Cover title.
Resumo:
Mode of access: Internet.
Resumo:
Background, aim, and scope Urban motor vehicle fleets are a major source of particulate matter pollution, especially of ultrafine particles (diameters < 0.1 µm), and exposure to particulate matter has known serious health effects. A considerable body of literature is available on vehicle particle emission factors derived using a wide range of different measurement methods for different particle sizes, conducted in different parts of the world. Therefore the choice as to which are the most suitable particle emission factors to use in transport modelling and health impact assessments presented as a very difficult task. The aim of this study was to derive a comprehensive set of tailpipe particle emission factors for different vehicle and road type combinations, covering the full size range of particles emitted, which are suitable for modelling urban fleet emissions. Materials and methods A large body of data available in the international literature on particle emission factors for motor vehicles derived from measurement studies was compiled and subjected to advanced statistical analysis, to determine the most suitable emission factors to use in modelling urban fleet emissions. Results This analysis resulted in the development of five statistical models which explained 86%, 93%, 87%, 65% and 47% of the variation in published emission factors for particle number, particle volume, PM1, PM2.5 and PM10 respectively. A sixth model for total particle mass was proposed but no significant explanatory variables were identified in the analysis. From the outputs of these statistical models, the most suitable particle emission factors were selected. This selection was based on examination of the statistical robustness of the statistical model outputs, including consideration of conservative average particle emission factors with the lowest standard errors, narrowest 95% confidence intervals and largest sample sizes, and the explanatory model variables, which were Vehicle Type (all particle metrics), Instrumentation (particle number and PM2.5), Road Type (PM10) and Size Range Measured and Speed Limit on the Road (particle volume). Discussion A multiplicity of factors need to be considered in determining emission factors that are suitable for modelling motor vehicle emissions, and this study derived a set of average emission factors suitable for quantifying motor vehicle tailpipe particle emissions in developed countries. Conclusions The comprehensive set of tailpipe particle emission factors presented in this study for different vehicle and road type combinations enable the full size range of particles generated by fleets to be quantified, including ultrafine particles (measured in terms of particle number). These emission factors have particular application for regions which may have a lack of funding to undertake measurements, or insufficient measurement data upon which to derive emission factors for their region. Recommendations and perspectives In urban areas motor vehicles continue to be a major source of particulate matter pollution and of ultrafine particles. It is critical that in order to manage this major pollution source methods are available to quantify the full size range of particles emitted for traffic modelling and health impact assessments.
Resumo:
The LAC was requested to review state motor vehicle resources and make recommendations. It focused on three statewide objectives posed by the committees: (1) Determine if any wasteful duplication exists among state-owned vehicle maintenance facilities. (2) Identify any waste or inefficiency in the use of state owned vehicles. (3) Identify unnecessary or personal use of state-owned vehicles.
Resumo:
Cover title.
Resumo:
"House Resolution 658 directed the Office of the Auditor General (OAG) to audit the Department of Central Management Services' (CMS) operation of the fleet of passenger cars used by State executive agencies. The Resolution called for the audit to address the total number of cars; number of take-home cars; necessity of take-home vehicles; costs of vehicles in Fiscal Year 2009; and the adequacy of CMS' system to record their use and maintenance and to check for official use, including whether it is possible to implement a system to track vehicles for business only."
Resumo:
Crashes at any particular transport network location consist of a chain of events arising from a multitude of potential causes and/or contributing factors whose nature is likely to reflect geometric characteristics of the road, spatial effects of the surrounding environment, and human behavioural factors. It is postulated that these potential contributing factors do not arise from the same underlying risk process, and thus should be explicitly modelled and understood. The state of the practice in road safety network management applies a safety performance function that represents a single risk process to explain crash variability across network sites. This study aims to elucidate the importance of differentiating among various underlying risk processes contributing to the observed crash count at any particular network location. To demonstrate the principle of this theoretical and corresponding methodological approach, the study explores engineering (e.g. segment length, speed limit) and unobserved spatial factors (e.g. climatic factors, presence of schools) as two explicit sources of crash contributing factors. A Bayesian Latent Class (BLC) analysis is used to explore these two sources and to incorporate prior information about their contribution to crash occurrence. The methodology is applied to the state controlled roads in Queensland, Australia and the results are compared with the traditional Negative Binomial (NB) model. A comparison of goodness of fit measures indicates that the model with a double risk process outperforms the single risk process NB model, and thus indicating the need for further research to capture all the three crash generation processes into the SPFs.
Resumo:
Purpose. To evaluate trends in the utilization of head, abdominal, thoracic and other body regions CTs in the management of victims of MVC at a level I trauma center from 1996 to 2006.^ Method. From the trauma registry, I identified patients involved in MVC's in a level I trauma center and categorized them into three age groups of 13-18, 19-55 and ≥56. I used International Classification of Disease (ICD-9-CM) codes to find the type and number of CTs examinations performed for each patient. I plotted the mean number of CTs per patient against year of admission to find the crude estimate of change in utilization pattern for each type of CT. I used logistic regression to assess whether repetitive CTs (≥ 2) for head, abdomen, thorax and other body regions were associated with age group and year of admission for MVC patients. I adjusted the estimates for gender, ethnicity, insurance status, mechanism and severity of injury, intensive care unit admission status, patient disposition (dead or alive) and year of admission.^ Results. Utilization of head, abdominal, thoracic and other body regions CTs significantly increased over 11-year period. Utilization of head CT was greatest in the 13-18 age group, and increased from 0.58 CT/patient in 1996 to 1.37 CT/patient in 2006. Abdominal CTs were more common in the ≥56+ age group, and increased from 0.33 CT/patient in 1996 to 0.72 CT/patient in 2006. Utilization of thoracic CTs was higher in the 56+ age group, and increased from 0.01 CT/patient in 1996 to 0.42 CT/patient in 2006. Utilization of other CTs did not change materially during the study period for adolescents, adults or older adults. In the multivariable analysis, after adjustment for potential confounders, repetitive head CTs significantly increased in the 13-18 age group (95% CI: 1.29-1.87, p=<0.001) relative to the 19-55 age group. Repetitive thoracic CT use was lower in adolescents (95% CI: 0.22-0.70, p=<0.001) relative to the 19-55 age group.^ Conclusion. There has been a substantial increase in the utilization of head, abdominal, thoracic and other CTs in the management of MVC patients. Future studies need to identify if increased utilization of CTs have resulted in better health outcome for these patients. ^
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
This report documents the results of a three million dollar traffic signal improvement demonstration program, known as the Iowa Motor Vehicle Fuel Reduction Program (the program). The program was funded with the use of oil overcharge funds and administered by the Iowa Departments of Natural Resources and Transportation. The objective of the program was to provide restitution to overcharged motorists by improving the efficiency of traffic signals. More efficient traffic signals reduce fuel consumption, delay, travel time, and automobile pollution while improving traffic safety. The program demonstrated the effectiveness of improving traffic signals and resulted in a 14.20-to-1 benefit-to-cost ratio.
Resumo:
Assessment and prediction of the impact of vehicular traffic emissions on air quality and exposure levels requires knowledge of vehicle emission factors. The aim of this study was quantification of emission factors from an on road, over twelve months measurement program conducted at two sites in Brisbane: 1) freeway type (free flowing traffic at about 100 km/h, fleet dominated by small passenger cars - Tora St); and 2) urban busy road with stop/start traffic mode, fleet comprising a significant fraction of heavy duty vehicles - Ipswich Rd. A physical model linking concentrations measured at the road for specific meteorological conditions with motor vehicle emission factors was applied for data analyses. The focus of the study was on submicrometer particles; however the measurements also included supermicrometer particles, PM2.5, carbon monoxide, sulfur dioxide, oxides of nitrogen. The results of the study are summarised in this paper. In particular, the emission factors for submicrometer particles were 6.08 x 1013 and 5.15 x 1013 particles per vehicle-1 km-1 for Tora St and Ipswich Rd respectively and for supermicrometer particles for Tora St, 1.48 x 109 particles per vehicle-1 km-1. Emission factors of diesel vehicles at both sites were about an order of magnitude higher than emissions from gasoline powered vehicles. For submicrometer particles and gasoline vehicles the emission factors were 6.08 x 1013 and 4.34 x 1013 particles per vehicle-1 km-1 for Tora St and Ipswich Rd, respectively, and for diesel vehicles were 5.35 x 1014 and 2.03 x 1014 particles per vehicle-1 km-1 for Tora St and Ipswich Rd, respectively. For supermicrometer particles at Tora St the emission factors were 2.59 x 109 and 1.53 x 1012 particles per vehicle-1 km-1, for gasoline and diesel vehicles, respectively.