939 resultados para Motor ability - Testing
Cerebellar mechanisms for motor learning: Testing predictions from a large-scale computer simulation
Resumo:
The cerebellum is the major brain structure that contributes to our ability to improve movements through learning and experience. We have combined computer simulations with behavioral and lesion studies to investigate how modification of synaptic strength at two different sites within the cerebellum contributes to a simple form of motor learning—Pavlovian conditioning of the eyelid response. These studies are based on the wealth of knowledge about the intrinsic circuitry and physiology of the cerebellum and the straightforward manner in which this circuitry is engaged during eyelid conditioning. Thus, our simulations are constrained by the well-characterized synaptic organization of the cerebellum and further, the activity of cerebellar inputs during simulated eyelid conditioning is based on existing recording data. These simulations have allowed us to make two important predictions regarding the mechanisms underlying cerebellar function, which we have tested and confirmed with behavioral studies. The first prediction describes the mechanisms by which one of the sites of synaptic modification, the granule to Purkinje cell synapses (gr → Pkj) of the cerebellar cortex, could generate two time-dependent properties of eyelid conditioning—response timing and the ISI function. An empirical test of this prediction using small, electrolytic lesions of the cerebellar cortex revealed the pattern of results predicted by the simulations. The second prediction made by the simulations is that modification of synaptic strength at the other site of plasticity, the mossy fiber to deep nuclei synapses (mf → nuc), is under the control of Purkinje cell activity. The analysis predicts that this property should confer mf → nuc synapses with resistance to extinction. Thus, while extinction processes erase plasticity at the first site, residual plasticity at mf → nuc synapses remains. The residual plasticity at the mf → nuc site confers the cerebellum with the capability for rapid relearning long after the learned behavior has been extinguished. We confirmed this prediction using a lesion technique that reversibly disconnected the cerebellar cortex at various stages during extinction and reacquisition of eyelid responses. The results of these studies represent significant progress toward a complete understanding of how the cerebellum contributes to motor learning. ^
Resumo:
Objectives: One important issue in sport and exercise psychology is to determine to what extent sports and exercise can help to increase self-esteem, and what the underlying mechanism might be. Based on the exercise and self-esteem model (EXSEM) and on findings from the sociometer theory, the mediating effect of physical self-concept and perceived social acceptance on the longitudinal relationship between motor ability and self-esteem was investigated. Design: Longitudinal study with three waves of data collection at intervals of ten weeks each. Method: 428 adolescents (46.3 % girls, mean age = 11.9, SD = .55) participated in the study, in which they performed three motor ability tests and completed paper-and-pencil questionnaires for physical self-concept and perceived social acceptance, as well as for self-esteem, at all three measuring points. Results: Using structural equation modelling procedures, the multiple mediation model revealed both physical self-concept and perceived social acceptance to be mediators between motor ability and self-esteem in the case of boys. In girls, on the other hand, the mediation between motor ability and self-esteem only takes place via physical self-concept. Conclusions: Gender differences in the relationship between motor ability and self-esteem suggest gender-specific interventions aimed at promoting self-concept.
Resumo:
The present research represents a coherent approach to understanding the root causes of ethnic group differences in ability test performance. Two studies were conducted, each of which was designed to address a key knowledge gap in the ethnic bias literature. In Study 1, both the LR Method of Differential Item Functioning (DIF) detection and Mixture Latent Variable Modelling were used to investigate the degree to which Differential Test Functioning (DTF) could explain ethnic group test performance differences in a large, previously unpublished dataset. Though mean test score differences were observed between a number of ethnic groups, neither technique was able to identify ethnic DTF. This calls into question the practical application of DTF to understanding these group differences. Study 2 investigated whether a number of non-cognitive factors might explain ethnic group test performance differences on a variety of ability tests. Two factors – test familiarity and trait optimism – were able to explain a large proportion of ethnic group test score differences. Furthermore, test familiarity was found to mediate the relationship between socio-economic factors – particularly participant educational level and familial social status – and test performance, suggesting that test familiarity develops over time through the mechanism of exposure to ability testing in other contexts. These findings represent a substantial contribution to the field’s understanding of two key issues surrounding ethnic test performance differences. The author calls for a new line of research into these performance facilitating and debilitating factors, before recommendations are offered for practitioners to ensure fairer deployment of ability testing in high-stakes selection processes.
Resumo:
This study examined the effectiveness of motor-encoding activities on memory and performance of students in a Grade One reading program. There were two experiments in the study. Experiment 1 replicated a study by Eli Saltz and David Dixon (1982). The effect of motoric enactment (Le., pretend play) of sentences on memory for the sentences was investigated. Forty Grade One students performed a "memory-for-sentences" technique, devised by Saltz and Dixon. Only the experimental group used motoric enactment of the sentences. Although quantitative findings revealed no significant difference between the mean scores of the experimental group versus the control group, aspects of the experimental design could have affected the results. It was suggested that Saltz and Dixon's study could be replicated again, with more attention given to variables such as population size, nature of the test sentences, subjects' previous educational experience and conditions related to the testing environment. The second experiment was an application of Saltz and Dixon's theory that motoric imagery should facilitate memory for sentences. The intent was to apply this theory to Grade One students' ability to remember words from their reading program. An experimental gym program was developed using kinesthetic activities to reinforce the skills of the classroom reading program. The same subject group was used in Experiment 2. It was hypothesized that the subjects who experienced the experimental gym program would show greater signs of progress in reading ability, as evidenced by their scores on Form G of the Woodcock Reading Mastery Test--Revised. The data from the WRM--R were analyzed with a 3-way split-plot analysis of variance in which group (experimental vs. control) and sex were the between subjects variables and test-time (pre-test vs. post-test) was the within-subjects variable. Findings revealed the following: (a) both groups made substantial gains over time on the visual-auditory learning sub-test and the triple action of group x sex x time also was significant; (b) children in the experimental and control groups performed similarly on both the pre- and post-test of the letter identification test; (c) time was the only significant effect on subjects' performance on the word identification task; (d) work attack scores showed marked improvement in performance over time for both the experimenta+ and control groups; (e) passage comprehension scores indicated an improvement in performance for both groups over time. Similar to Experiment 1, it is suggested that several modifications in the experimental design could produce significant results. These factors are addressed with suggestions for further research in the area of active learning; more specifically, the effect of motor-encoding activities on memory and academic performance of children.
Resumo:
Background. Initial evidence suggests that the integrity of the ipsilesional corticospinal tract (CST) after stroke is strongly related to motor function in the chronic state but not the treatment gain induced by motor rehabilitation. Objective. We examined the association of motor status and treatment benefit by testing patients with a wide range of severity of hemiparesis of the left and right upper extremity. Method. Diffusion tensor imaging was performed in 22 patients beyond 12 months after onset of stroke with severe to moderate hemiparesis. Motor function was tested before and after 2 weeks of modified constraint-induced movement therapy. Results. CST integrity, but not lesion volume, correlated with the motor ability measures of the Wolf Motor Function Test and the Motor Activity Log. No differences were found between left and right hemiparesis. Motor performance improved significantly with the treatment regime, and did so equally for patients with left and right arm paresis. However, treatment benefit was not associated with either CST integrity or lesion volume. Conclusion. CST integrity correlated best in this small trial with chronic long-term status but not treatment-induced improvements. The CST may play a different role in the mechanisms mediating long-term outcome compared to those underlying practice-induced gains after a chronic plateau in motor function.
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
There has been a tremendous increase in our knowledge of hum motor performance over the last few decades. Our theoretical understanding of how an individual learns to move is sophisticated and complex. It is difficult however to relate much of this information in practical terms to physical educators, coaches, and therapists concerned with the learning of motor skills (Shumway-Cook & Woolcott, 1995). Much of our knowledge stems from lab testing which often appears to bear little relation to real-life situations. This lack of ecological validity has slowed the flow of information from the theorists and researchers to the practitioners. This paper is concerned with taking some small aspects of motor learning theory, unifying them, and presenting them in a usable fashion. The intention is not to present a recipe for teaching motor skills, but to present a framework from which solutions can be found. If motor performance research has taught us anything, it is that every individual and situation presents unique challenges. By increasing our ability to conceptualize the learning situation we should be able to develop more flexible and adaptive responses to the challege of teaching motor skills. The model presented here allows a teacher, coach, or therapist to use readily available observations and known characteristics about a motor task and to conceptualize them in a manner which allows them to make appropriate teaching/learning decisions.
Resumo:
A relationship between motor ability and cognitive performance has been previously reported. This study aimed to investigate the association between movement and cognitive performance at 1 and 4 years corrected age of children born less than 1000 g, and whether developmental testing of movement at 1 year is predictive of cognitive performance at 4 years. Motor development was assessed at both ages using the neurosensory motor developmental assessment (NSMDA) and motor development was classified as normal, or minimal, mild, moderate-severe dysfunction. Cognitive performance was assessed on the Griffith Mental Developmental Scale at 1 year and McCarthy Scales of Children's Abilities at 4 years. Subjects included 198 children of birthweight less than 1000 g. Of these 132 children returned for follow-up at the corrected ages of both 1 and 4 years. The 66 children not included had a slight increase in gestational age, while the mothers were younger and had a lower level of education. A significant association was found between NSMDA group classification at 1 year and cognitive performance at both 1 and 4 years (p
Resumo:
There has been a tremendous increase in our knowledge of hum motor performance over the last few decades. Our theoretical understanding of how an individual learns to move is sophisticated and complex. It is difficult however to relate much of this information in practical terms to physical educators, coaches, and therapists concerned with the learning of motor skills (Shumway-Cook & Woolcott, 1995). Much of our knowledge stems from lab testing which often appears to bear little relation to real-life situations. This lack of ecological validity has slowed the flow of information from the theorists and researchers to the practitioners. This paper is concerned with taking some small aspects of motor learning theory, unifying them, and presenting them in a usable fashion. The intention is not to present a recipe for teaching motor skills, but to present a framework from which solutions can be found. If motor performance research has taught us anything, it is that every individual and situation presents unique challenges. By increasing our ability to conceptualize the learning situation we should be able to develop more flexible and adaptive responses to the challege of teaching motor skills. The model presented here allows a teacher, coach, or therapist to use readily available observations and known characteristics about a motor task and to conceptualize them in a manner which allows them to make appropriate teaching/learning decisions.
Resumo:
There is an emerging awareness that children with poor motor abilities are at particular risk for overweight. This cross-sectional study examined the influence of physical activity behaviour on the relationship between motor proficiency and body composition. Participants were 1287 (646 males, 641 females) Grade 6 students in the Physical Health Activity Study project. Height, weight, waist girth, and motor proficiency (Bruininks-Oseretsky Test of Motor Performance BOTMP-SF) were assessed. Physical activity behaviours were also evaluated with a multifaceted approach and reported for school-based, non-school based physical activity, free-time play, and sedentary activities (Participation Questionnaire), and leisure time exercise (Godin-Shephard Leisure Time Exercise Questionnaire GS). Overweight was defined by BMI scores: boys :::20.6-21.2 and <25.1-26.0; girls: ::: 20.7-21.7and <25.4-26.7 and obesity was defined as: boys:::: 25.1-26.0; girls: :::25.4-26.7. Children were classified as case group (CG,::; 10% on BOTMP-SF), borderline case group (BC, > 10% to ::; 20% on BOTMP-SF) or non-case group. Analyses of variance (ANOVAs) uncovered a significant difference in overweight and obesity between the case group and non-case group. Normal-weight children reported higher participation in organized school-sports (intra-mural and inter-school teams). The CG reported significantly lower participation in school sports teams and lower GS results, with a trend towards lower participation in all active pursuits. They also reported a significantly higher duration of television watching and book reading. There were no significant differences between motor proficiency groups by gender, age, nonschool sports, or free-time activity. Multivariate ordinal logistic regression analysis showed that the case group was 10.9 times more likely to be overweight/obese than their peers. No single aspect of physical activity was able to explain the difference in odds ratios for the motor proficiency groups. However, for the entire cohort, children who participated in more organized school sports were less likely to be overweight/obese. These findings confirm that children with low motor proficiency are at significant risk of developing overweight. It is evident that these children have generally attenuated activity levels and heightened levels of sedentary pursuits. School-based activities appear particularly limited, and are the one area where children have near autonomy in their decision to pursue active opportunities. The promotion of school-based programs, specifically intramural sports may be an important aspect in increasing children's overall activity levels. It is also essential to consider the needs of those children with low motor proficiency when designing activity promotion programs. Future research should further explore motor proficiency and overweight/obesity.
Resumo:
The inverse relationships between motor proficiency and overweight, and between overweight and body satisfaction have been well documented. However, the association between motor proficiency and body satisfaction has been largely neglected in the literature. Knowledge of the influence that low motor proficiency may have on body satisfaction is essential if the full burden that those children with poor motor abilities face is to be fully recognized, as low body satisfaction has been linked to an increased risk for low self-esteem, depression, and disordered eating. The cohort investigated in this report included 1907 (971 males, 936 female) Grade 5 students from the Physical Health Activity Study Team (PHAST) project in the Niagara Region of Southern Ontario. Children were grouped as overweight or healthy weight (using BMI cut offs for age and gender), and as low motor proficiency or normal motor proficiency (cut-off set at lowest 10% Bruininks Oseretsky Test of Motor Proficiency-short form (BOTMPsf). It was apparent from analyses of variance (ANOVAs) by gender that boys demonstrated significantly higher motor proficiency scores. As a result separate multiple logistic regressions by gender were used to determine the relationship between body satisfaction, BMI, and motor proficiency. There was a significant relationship between BMI and body satisfaction for both genders (p<0.01) and for males a significant relationship between motor proficiency and body satisfaction (p<0.03). Overweight females were less likely to be satisfied with their bodies with an odds ratio (OR) of 0.33 (CI: 0.23-0.47). The same trend was found in overweight males (OR: 0.42, CI: 0.29-0.59). Males with low motor proficiency were significantly less satisfied with their bodies (OR: 0.53, CI: 0.29-0.97). Males with poor motor proficiency were at greater risk for low body satisfaction regardless of their overweight status. Overweight is known to be prevalent among children with low motor proficiency and, these results indicate that low body satisfaction is also a significant concern. These findings confirm that attention needs to be paid to perceptions of body satisfaction among children with low motor proficiency. This is particularly true for boys, as their bodies may fail them in two common societal expectations, shape and skill and for whom their risk of low body satisfaction is heightened by their poor motor proficiency.
Resumo:
Evidence suggests that children with developmental coordination disorder (DCD) have lower levels of cardiorespiratory fitness (CRF) compared to children without the condition. However, these studies were restricted to field-based methods in order to predict V02 peak in the determination of CRF. Such field tests have been criticised for their ability to provide a valid prediction of V02 peak and vulnerability to psychological aspects in children with DCD, such as low perceived adequacy toward physical activity. Moreover, the contribution of physical activity to the variance in V02 peak between the two groups is unknown. The purpose of our study was to determine the mediating role of physical activity and perceived adequacy towards physical activity on V02 peak in children with significant motor impairments. This prospective case-control design involved 122 (age 12-13 years) children with significant motor impairments (n=61) and healthy matched controls (n=61) based on age, gender and school location. Participants had been previously assessed for motor proficiency and classified as a probable DCD (p-DCD) or healthy control using the movement ABC test. V02 peak was measured by a progressive exercise test on a cycle ergometer. Perceived adequacy was measured using a 7 -item subscale from Children's Selfperception of Adequacy and Predilection for Physical Activity scale. Physical activity was monitored for seven days with the Actical® accelerometer. Children with p-DCD had significantly lower V02 peak (48.76±7.2 ml/ffm/min; p:50.05) compared to controls (53.12±8.2 ml/ffm/min), even after correcting for fat free mass. Regression analysis demonstrated that perceived adequacy and physical activity were significant mediators in the relationship between p-DCD and V02 peak. In conclusion, using a stringent laboratory assessment, the results of the current study verify the findings of earlier studies, adding low CRF to the list of health consequences associated with DCD. It seems that when testing for CRF in this population, there is a need to consider the psychological barriers associated with their condition. Moreover, strategies to increase physical activity in children with DCD may result in improvement in their CRF.
Resumo:
Background. With diffusion-tensor imaging (DTi) it is possible to estimate the structural characteristics of fiber bundles in vivo. This study used DTi to infer damage to the corticospinal tract (CST) and relates this parameter to (a) the level of residual motor ability at least 1 year poststroke and (b) the outcome of intensive motor rehabilitation with constraint-induced movement therapy (CIMT). Objective. To explore the role of CST damage in recovery and CIMT efficacy. Methods. Ten patients with low-functioning hemiparesis were scanned and tested at baseline, before and after CIMT. Lesion overlap with the CST was indexed as reduced anisotropy compared with a CST variability map derived from 26 controls. Residual motor ability was measured through the Wolf Motor Function Test (WMFT) and the Motor Activity Log (MAL) acquired at baseline. CIMT benefit was assessed through the pre—post treatment comparison of WMFT and MAL performance. Results. Lesion overlap with the CST correlated with residual motor ability at baseline, with greater deficits observed in patients with more extended CST damage. Infarct volume showed no systematic association with residual motor ability. CIMT led to significant improvements in motor function but outcome was not associated with the extent of CST damage or infarct volume. Conclusion. The study gives in vivo support for the proposition that structural CST damage, not infarct volume, is a major predictor for residual functional ability in the chronic state. The results provide initial evidence for positive effects of CIMT in patients with varying, including more severe, CST damage.
Resumo:
The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for delta-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy(2J)/dy(2J) mouse, both presenting significant reduction of alpha 2-laminin in the muscle and a severe phenotype. The myodystrophy mouse (Large(myd)) harbors a mutation in the glycosyltransferase Large, which leads to altered glycosylation of alpha-DG, and also a severe phenotype. Other informative models for muscle proteins include the knockout mouse for myostatin, which demonstrated that this protein is a negative regulator of muscle growth. Additionally, the stress syndrome in pigs, caused by mutations in the porcine RYR1 gene, helped to localize the gene causing malignant hypertermia and Central Core myopathy in humans. The study of animal models for genetic diseases, in spite of the existence of differences in some phenotypes, can provide important clues to the understanding of the pathogenesis of these disorders and are also very valuable for testing strategies for therapeutic approaches.