891 resultados para Motor Cortical Areas


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Converging evidence from transgenic animal models of amyotrophic lateral sclerosis (ALS) and human studies suggest alterations in excitability of the motor neurons in ALS. Specifically, in studies on human subjects with ALS the motor cortex was reported to be hyperexcitable. The present study was designed to test the hypothesis that infusion of cerebrospinal fluid from patients with sporadic ALS (ALS-CSF) into the rat brain ventricle can induce hyperexcitability and structural changes in the motor cortex leading to motor dysfunction. A robust model of sporadic ALS was developed experimentally by infusing ALS-CSF into the rat ventricle. The effects of ALS-CSF at the single neuron level were examined by recording extracellular single unit activity from the motor cortex while rats were performing a reach to grasp task. We observed an increase in the firing rate of the neurons of the motor cortex in rats infused with ALS-CSF compared to control groups. This was associated with impairment in a specific component of reach with alterations in the morphological characteristics of the motor cortex. It is likely that the increased cortical excitability observed in the present study could be the result of changes in the intrinsic properties of motor cortical neurons, a dysfunctional inhibitory mechanism and/or an underlying structural change culminating in a behavioral deficit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Posterior parietal cortex (PPC) constitutes a critical cortical node in the sensorimotor system in which goal-directed actions are computed. This information then must be transferred into commands suitable for hand movements to the primary motor cortex (M1). Complexity arises because reach-to-grasp actions not only require directing the hand towards the object (transport component), but also preshaping the hand according to the features of the object (grip component). Yet, the functional influence that specific PPC regions exert over ipsilateral M1 during the planning of different hand movements remains unclear in humans. Here we manipulated transport and grip components of goal-directed hand movements and exploited paired-pulse transcranial magnetic stimulation (ppTMS) to probe the functional interactions between M1 and two different PPC regions, namely superior parieto-occipital cortex (SPOC) and the anterior region of the intraparietal sulcus (aIPS), in the left hemisphere. We show that when the extension of the arm is required to contact a target object, SPOC selectively facilitates motor evoked potentials, suggesting that SPOC-M1 interactions are functionally specific to arm transport. In contrast, a different pathway, linking the aIPS and ipsilateral M1, shows enhanced functional connections during the sensorimotor planning of grip. These results support recent human neuroimaging findings arguing for specialized human parietal regions for the planning of arm transport and hand grip during goal-directed actions. Importantly, they provide new insight into the causal influences these different parietal regions exert over ipsilateral motor cortex for specific types of planned hand movements

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose:
The objective of this study was to assess the effect of anodal transcranial direct current stimulation (a-tDCS) on voluntary dynamic strength and cortical plasticity when applied during a 3-wk strength training program for the wrist extensors.

Methods:
Thirty right-handed participants were randomly allocated to the tDCS, sham, or control group. The tDCS and sham group underwent 3 wk of heavy-load strength training of the right wrist extensors, with 20 min of a-tDCS (2 mA) or sham tDCS applied during training (double blinded). Outcome measures included voluntary dynamic wrist extension strength, muscle thickness, corticospinal excitability, short-interval intracortical inhibition (SICI), and silent period duration.

Results:
Maximal voluntary strength increased in both the tDCS and sham groups (14.89% and 11.17%, respectively, both P < 0.001). There was no difference in strength gain between the two groups (P = 0.229) and no change in muscle thickness (P = 0.15). The tDCS group demonstrated an increase in motor-evoked potential amplitude at 15%, 20%, and 25% above active motor threshold, which was accompanied by a decrease in SICI during 50% maximal voluntary isometric contraction and 20% maximal voluntary isometric contraction (all P < 0.05). Silent period decreased for both the tDCS and sham groups (P < 0.001).

Conclusion:
The application of a-tDCS in combination with strength training of the wrist extensors in a healthy population did not provide additional benefit for voluntary dynamic strength gains when compared with standard strength training. However, strength training with a-tDCS appears to differentially modulate cortical plasticity via increases in corticospinal excitability and decreases in SICI, which did not occur following strength training alone

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased, decreased or normal excitability to transcranial magnetic stimulation (TMS) has been reported in the motor (M1) and visual cortices of patients with migraine. Light deprivation (LD) has been reported to modulate M1 excitability in control subjects (CS). Still, effects of LD on M1 excitability compared to exposure to environmental light exposure (EL) had not been previously described in patients with migraine (MP). To further our knowledge about differences between CS and MP, regarding M1 excitability and effects of LD on M1 excitability, we opted for a novel approach by extending measurement conditions. We measured motor thresholds (MTs) to TMS, short-interval intracortical inhibition, and ratios between motor-evoked potential amplitudes and supramaximal M responses in MP and CS on two different days, before and after LD or EL. Motor thresholds significantly increased in MP in LD and EL sessions, and remained stable in CS. There were no significant between-group differences in other measures of TMS. Short-term variation of MTs was greater in MP compared to CS. Fluctuation in excitability over hours or days in MP is an issue that, until now, has been relatively neglected. The results presented here will help to reconcile conflicting observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Object Resection of lesions close to the primary motor cortex (M1) and the corticospinal tract (CST) is generally regarded as high-risk surgery due to reported rates of postoperative severe deficits of up to 50%. The authors' objective was to determine the feasibility and safety of low-threshold motor mapping and its efficacy for increasing the extent of lesion resection in the proximity of M1 and the CST in children and adolescents. Methods The authors analyzed 8 consecutive pediatric patients in whom they performed 9 resections for lesions within or close (≤ 10 mm) to M1 and/or the CST. Monopolar high-frequency motor mapping with train-of-five stimuli (pulse duration 500 μsec, interstimulus interval 4.0 msec, frequency 250 Hz) was used. The motor threshold was defined as the minimal stimulation intensity that elicited motor evoked potentials (MEPs) from target muscles (amplitude > 30 μV). Resection was performed toward M1 and the CST at sites negative to 1- to 3-mA high-frequency train-of-five stimulation. Results The M1 was identified through high-frequency train-of-five via application of varying low intensities. The lowest motor thresholds after final resection ranged from 1 to 9 mA in 8 cases and up to 18 mA in 1 case, indicating proximity to motor neurons. Intraoperative electroencephalography documented an absence of seizures during all surgeries. Two transient neurological deficits were observed, but there were no permanent deficits. Postoperative imaging revealed complete resection in 8 patients and a very small remnant (< 0.175 cm(3)) in 1 patient. Conclusions High-frequency train-of-five with a minimal threshold of 1-3 mA is a feasible and safe procedure for resections in the proximity of the CST. Thus, low-threshold motor mapping might help to expand the area for safe resection in pediatric patients with lesions located within the precentral gyrus and close to the CST, and may be regarded as a functional navigational tool. The additional use of continuous MEP monitoring serves as a safety feedback for the functional integrity of the CST, especially because the true excitability threshold in children is unknown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECT Resection of glioblastoma adjacent to motor cortex or subcortical motor pathways carries a high risk of both incomplete resection and postoperative motor deficits. Although the strategy of maximum safe resection is widely accepted, the rates of complete resection of enhancing tumor (CRET) and the exact causes for motor deficits (mechanical vs vascular) are not always known. The authors report the results of their concept of combining monopolar mapping and 5-aminolevulinic acid (5-ALA)-guided surgery in patients with glioblastoma adjacent to eloquent tissue. METHODS The authors prospectively studied 72 consecutive patients who underwent 5-ALA-guided surgery for a glioblastoma adjacent to the corticospinal tract (CST; < 10 mm) with continuous dynamic monopolar motor mapping (short-train interstimulus interval 4.0 msec, pulse duration 500 μsec) coupled to an acoustic motor evoked potential (MEP) alarm. The extent of resection was determined based on early (< 48 hours) postoperative MRI findings. Motor function was assessed 1 day after surgery, at discharge, and at 3 months. RESULTS Five patients were excluded because of nonadherence to protocol; thus, 67 patients were evaluated. The lowest motor threshold reached during individual surgery was as follows (motor threshold, number of patients): > 20 mA, n = 8; 11-20 mA, n = 13; 6-10 mA, n = 10; 4-5 mA, n = 13; and 1-3 mA, n = 23. Motor deterioration at postsurgical Day 1 and at discharge occurred in 30% (n = 20) and 10% (n = 7) of patients, respectively. At 3 months, 3 patients (4%) had a persisting postoperative motor deficit, 2 caused by vascular injury and 1 by mechanical injury. The rates of intra- and postoperative seizures were 1% and 0%, respectively. Complete resection of enhancing tumor was achieved in 73% of patients (49/67) despite proximity to the CST. CONCLUSIONS A rather high rate of CRET can be achieved in glioblastomas in motor eloquent areas via a combination of 5-ALA for tumor identification and intraoperative mapping for distinguishing between presumed and actual motor eloquent tissues. Continuous dynamic mapping was found to be a very ergonomic technique that localizes the motor tissue early and reliably.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although neuronal synchronization has been shown to exist in primary motor cortex (MI), very little is known about its possible contribution to coding of movement. By using cross-correlation techniques from multi-neuron recordings in MI, we observed that activity of neurons commonly synchronized around the time of movement initiation. For some cell pairs, synchrony varied with direction in a manner not readily predicted by the firing of either neuron. Information theoretic analysis demonstrated quantitatively that synchrony provides information about movement direction beyond that expected by simple rate changes. Thus, MI neurons are not simply independent encoders of movement parameters but rather engage in mutual interactions that could potentially provide an additional coding dimension in cortex.