826 resultados para Motor Activity
Resumo:
The river perch (Perca fluviatilis L.) is most active in the daytime hours, and displays seasonal changes of diel rhythm with a break of the rhythm in spring and autumn. In the present work data were obtained on the motor activity of 3 perch measuring l8-20 cm, caught by net in the littoral of a reservoir and spawned under laboratory conditions. The degree of intensity of movement of perch was judged by special experiments. The results are summarised in this short paper.
Resumo:
In mammals, the development of reflexes is often regarded as an innate process. However, recent findings show that fetuses are endowed with favorable conditions for ontogenetic development. In this article, we hypothesize that the circuitry of at least some mammalian reflexes can be self-organized from the sensory and motor interactions brought forth in a musculoskeletal system. We focus mainly on three reflexes: the myotatic reflex, the reciprocal inhibition reflex, and the reverse myotatic reflex. To test our hypothesis, we conducted a set of experiments on a simulated musculoskeletal system using pairs of agonist and antagonist muscles. The reflex connectivity is obtained by producing spontaneous motor activity in each muscle and by correlating the resulting sensor and motor signals. Our results show that, under biologically plausible conditions, the reflex circuitry thus obtained is consistent with that identified in relation to the analogous mammalian reflexes. In addition, they show that the reflex connectivity obtained depends on the morphology of the musculoskeletal system as well as on the environment that it is embedded in.
Resumo:
Transient episodes of synchronisation of neuronal activity in particular frequency ranges are thought to underlie cognition. Empirical mode decomposition phase locking (EMDPL) analysis is a method for determining the frequency and timing of phase synchrony that is adaptive to intrinsic oscillations within data, alleviating the need for arbitrary bandpass filter cut-off selection. It is extended here to address the choice of reference electrode and removal of spurious synchrony resulting from volume conduction. Spline Laplacian transformation and independent component analysis (ICA) are performed as pre-processing steps, and preservation of phase synchrony between synthetic signals. combined using a simple forward model, is demonstrated. The method is contrasted with use of bandpass filtering following the same preprocessing steps, and filter cut-offs are shown to influence synchrony detection markedly. Furthermore, an approach to the assessment of multiple EEG trials using the method is introduced, and the assessment of statistical significance of phase locking episodes is extended to render it adaptive to local phase synchrony levels. EMDPL is validated in the analysis of real EEG data, during finger tapping. The time course of event-related (de)synchronisation (ERD/ERS) is shown to differ from that of longer range phase locking episodes, implying different roles for these different types of synchronisation. It is suggested that the increase in phase locking which occurs just prior to movement, coinciding with a reduction in power (or ERD) may result from selection of the neural assembly relevant to the particular movement. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Previous studies have demonstrated that when we observe somebody else executing an action many areas of our own motor systems are active. It has been argued that these motor activations are evidence that we motorically simulate observed actions; this motoric simulation may support various functions such as imitation and action understanding. However, whether motoric simulation is indeed the function of motor activations during action observation is controversial, due to inconsistency in findings. Previous studies have demonstrated dynamic modulations in motor activity when we execute actions. Therefore, if we do motorically simulate observed actions, our motor systems should also be modulated dynamically, and in a corresponding fashion, during action observation. Using magnetoencephalography (MEG), we recorded the cortical activity of human participants while they observed actions performed by another person. Here, we show that activity in the human motor system is indeed modulated dynamically during action observation. The finding that activity in the motor system is modulated dynamically when observing actions can explain why studies of action observation using functional magnetic resonance imaging (fMRI) have reported conflicting results, and is consistent with the hypothesis that we motorically simulate observed actions.
Resumo:
Abnormal intragastric distribution of food (IDF) and a phasic contractility in the proximal stomach have been related to dyspeptic symptoms. Thus, the behaviour of the stomach and the proximal region, in particular, continues to attract attention and demand for reliable and comfortable techniques. The aims of this study were to employ AC Biosus-ceptometry (ACB) and scintigraphy to evaluate IDF and gastric motor activity in humans. Fifteen healthy volunteers ingested 60 mL of yogurt containing 2 mCi of Tc-99m and 4 g of ferrite. Each volunteer had gastric motility and IDF evaluated twice on separate days; on one occasion by ACB and another by scintigraphy. Digital signal processing was performed in MatLab (Mathworks Inc., Natick, MA, USA). Results were expressed as mean +/- SD. Similar results of distal accumulation time (P < 0.001) were obtained for scintigraphy (6.93 +/- 3.25 min) and for ACB (7.04 +/- 3.65 min). Fast Fourier Transform revealed two dominant frequencies (P > 0.9). Besides the well-know frequency of 3 cpm, our results showed identical frequencies in proximal stomach recordings (P < 0.001) for scintigraphic (1.01 +/- 0.01 cpm) and ACB (0.98 +/- 0.06 cpm). In summary, our data showed that scintigraphy and ACB are promising techniques to evaluate several aspects of gastric motility. Moreover, ACB is non-invasive, radiation-free and deserves the same importance as conventional methods for this kind of analysis.
Resumo:
The effects of prenatal exposure of rat pups to 0.08 mg/kg deltamethrin (DTM) on physical, reflex and behavioral developmental parameters, on forced swimming and open-field behaviors, and on striatal monoamine levels at 60 days of age were observed. Maternal and offspring body weight, physical and reflex development were unaffected by the exposure to the pesticide. At 21 days of age, open-field locomotion frequency and immobility duration of male and female offspring were not different between control and exposed animals. However, male rearing frequency was increased in experimental animals. A decreased immobility latency to float and in general activity after the swimming test in male offspring was observed at adult age; no interference was detected in the float duration during the swimming test. In addition, these animals presented higher striatal 3,4-dihydroxyphenylacetic acid (DOPAC) levels without modification in dopamine (DA) levels and an increased DOPAC/DA ratio. These data indicate a higher activity of the dopaminergic system in these animals. Noradrenaline (NA) levels were increased, while MHPG levels were not detectable in the system studied. Serotonin (5-HT) and 5-hydroxyindolacetic acid (5-HIAA) levels, as well as the homovanillic acid (HVA)/DA ratio, were not modified by the exposure to the pesticide. No changes were observed in swimming and open-field behaviors nor were there any changes in striatal monoamines or their metabolites in the female experimental group. In relation to the pesticide formula, the present data showing that prenatal exposure to DTM alters latency to float and the activity of striatal dopaminergic system might reflect a persistent effect of the pesticide on animal motor activity, mainly in males. on the other hand, the decrease in general activity observed in experimental male rats suggests higher levels of emotionality induced by previous exposure to the swimming behavior test in relation to control animals. Data gathered in the present study may be important for the assessment of the safety of pyrethroid insecticides. (C) 2001 Elsevier B.V. All rights reserved.
Resumo:
Motor development is influenced by many factors such as practice and appropriate instruction, provided by teachers, even in preschool and elementary school. The goal of this paper was to discuss the misconception that maturation underlies children's motor skill development and to show that physical education, even in early years of our school system, is critical to promote proficiency and enrolment of children's in later motor activities. Motor skill development, as a curricular focus, has been marginalized in many of our physical education proposal and in doing so, we have not promote motor competence in our children who lack proficiency to engage and to participate in later motor activities such as sport-related or recreational.
Resumo:
Objectives: The present study investigated the association between motor activity and severity of depression in 6 depressed adolescent outpatients. Method: Motor activity was assessed by actigraphy and the severity of depression was assessed weekly using the CDRS-R. The levels of motor activity were analyzed by considering activity parameters. Results: Among the parameters of motor activity studied, the mean total activity, the mean 24-hour activity levels, the mean waking activity, and the mean activity level between 12:00 and 18:00 h were inversely correlated with severity of depression. The means of the 10 most active hours tended toward a negative correlation with the depressive severity score. Conclusion: The results seem to suggest an association between motor activity level and severity of depression in adolescents. Nevertheless, in order to reach a more conclusive understanding, it would be necessary to replicate this study using a larger number of individuals as well as a longer observation period. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Aim of this study is to describe the possible diagnostic value of sleep disturbances in the differential diagnosis of neurodegenerative diseases characterized by parkinsonism at onset. 42 consecutive patients with parkinsonian features and disease duration up to 3 years were included in the BO-ProPark study. Each patient was evaluated twice, at baseline (T0) and 16 months later (T1). Patients were diagnosed as Parkinson disease (PD, 27 patients), PD plus (PD with cognitive impairment/dementia or dysautonomia, 4 patients) and parkinsonian syndrome (PS, 11 patients). All patients underwent a full night video-polysomnography scored by a neurologist blinded to the clinical diagnosis. Sleep efficiency and total sleep time were reduced in all patients; wake after sleep onset was higher in patients with atypical parkinsonisms than in PD patients. No significant differences between groups of patients were detected in other sleep parameters. The mean percentage of epochs with enhanced tonic muscle EMG activity during REM sleep was higher in PD plus and PS than in PD. No difference in phasic muscle EMG activity during REM sleep was seen between the two groups. REM behaviour disorder was more frequent in PD plus and PS than in PD patients. Our data suggest that REM sleep motor control is more frequently impaired at disease onset in patients with PS and PD plus compared to PD patients. The presence of RBD or an enhanced tonic muscle EMG activity in a patient with recent onset parkinsonian features should suggest a diagnosis of atypical parkinsonism, rather than PD. More data are needed to establish the diagnostic value of these features in the differential diagnosis of parkinsonisms. The evaluation of sleep disorders may be a useful tool in the differential diagnosis of parkinsonism at onset.
Resumo:
Variations of white matter integrity have been associated with interindividual differences in brain function. Still, little is known about the impact of white matter integrity on quantitative motor behaviour. Diffusion tensor imaging and continuous wrist actigraphy were measured on the same day in 12 individuals. Fractional anisotropy as measure of white matter integrity was correlated with the motor activity level. Positive correlations of fractional anisotropy and activity level were detected in the cingulum and the right superior longitudinal fasciculus underneath the precentral gyrus. Negative correlations were found in the left corticobulbar tract, in the right posterior corpus callosum and in the left superior longitudinal fasciculus. Volitional motor activity was associated with white matter integrity in motor relevant fiber tracts.
Resumo:
Reduced motor activity has been reported in schizophrenia and was associated with subtype, psychopathology and medication. Still, little is known about the neurobiology of motor retardation. To identify neural correlates of motor activity, resting state cerebral blood flow (CBF) was correlated with objective motor activity of the same day. Participants comprised 11 schizophrenia patients and 14 controls who underwent magnetic resonance imaging with arterial spin labeling and wrist actigraphy. Patients had reduced activity levels and reduced perfusion of the left parahippocampal gyrus, left middle temporal gyrus, right thalamus, and right prefrontal cortex. In controls, but not in schizophrenia, CBF was correlated with activity in the right thalamic ventral anterior (VA) nucleus, a key module within basal ganglia-cortical motor circuits. In contrast, only in schizophrenia patients positive correlations of CBF and motor activity were found in bilateral prefrontal areas and in the right rostral cingulate motor area (rCMA). Grey matter volume correlated with motor activity only in the left posterior cingulate cortex of the patients. The findings suggest that basal ganglia motor control is impaired in schizophrenia. In addition, CBF of cortical areas critical for motor control was associated with volitional motor behavior, which may be a compensatory mechanism for basal ganglia dysfunction.
Resumo:
Altered structural connectivity is a key finding in schizophrenia, but the meaning of white matter alterations for behavior is rarely studied. In healthy subjects, motor activity correlated with white matter integrity in motor tracts. To explore the relation of motor activity and fractional anisotropy (FA) in schizophrenia, we investigated 19 schizophrenia patients and 24 healthy control subjects using Diffusion Tensor Imaging (DTI) and actigraphy on the same day. Schizophrenia patients had lower activity levels (AL). In both groups linear relations of AL and FA were detected in several brain regions. Schizophrenia patients had lower FA values in prefrontal and left temporal clusters. Furthermore, using a general linear model, we found linear negative associations of FA and AL underneath the right supplemental motor area (SMA), the right precentral gyrus and posterior cingulum in patients. This effect within the SMA was not seen in controls. This association in schizophrenia patients may contribute to the well known dysfunctions of motor control. Thus, structural disconnectivity could lead to disturbed motor behavior in schizophrenia.
Resumo:
Despite the use of actigraphy in depression research, the association of depression ratings and quantitative motor activity remains controversial. In addition, the impact of recurring episodes on motor activity is uncertain. In 76 medicated inpatients with major depression (27 with a first episode, 49 with recurrent episodes), continuous wrist actigraphy for 24h and scores on the Hamilton Depression Rating Scale (HAMD) were obtained. In addition, 10 subjects of the sample wore the actigraph over a period of 5 days, in order to assess the reliability of a 1-day measurement. Activity levels were stable over 5 consecutive days. Actigraphic parameters did not differ between patients with a first or a recurrent episode, and quantitative motor activity failed to correlate with the HAMD total score. However, of the motor-related single items of the HAMD, the item activities was associated with motor activity parameters, while the items agitation and retardation were not. Actigraphy is consistent with clinical observation for the item activities. Expert raters may not correctly rate the motor aspects of retardation and agitation in major depression.