996 resultados para Motion Compensation
Resumo:
Respiration-induced target motion is a major problem in intensity-modulated radiation therapy. Beam segments are delivered serially to form the total dose distribution. In the presence of motion, the spatial relation between dose deposition from different segments will be lost. Usually, this results in over-and underdosage. Besides such interplay effects between target motion and dynamic beam delivery as known from photon therapy, changes in internal density have an impact on delivered dose for intensity-modulated charged particle therapy. In this study, we have analysed interplay effects between raster scanned carbon ion beams and target motion. Furthermore, the potential of an online motion strategy was assessed in several simulations. An extended version of the clinical treatment planning software was used to calculate dose distributions to moving targets with and without motion compensation. For motion compensation, each individual ion pencil beam tracked the planned target position in the lateral aswell as longitudinal direction. Target translations and rotations, including changes in internal density, were simulated. Target motion simulating breathing resulted in severe degradation of delivered dose distributions. For example, for motion amplitudes of +/- 15 mm, only 47% of the target volume received 80% of the planned dose. Unpredictability of resulting dose distributions was demonstrated by varying motion parameters. On the other hand, motion compensation allowed for dose distributions for moving targets comparable to those for static targets. Even limited compensation precision (standard deviation similar to 2 mm), introduced to simulate possible limitations of real-time target tracking, resulted in less than 3% loss in dose homogeneity.
Resumo:
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.
Resumo:
Details of a new low power fast Fourier transform (FFT) processor for use in digital television applications are presented. This has been fabricated using a 0.6-µm CMOS technology and can perform a 64 point complex forward or inverse FFT on real-time video at up to 18 Megasamples per second. It comprises 0.5 million transistors in a die area of 7.8 × 8 mm and dissipates 1 W. The chip design is based on a novel VLSI architecture which has been derived from a first principles factorization of the discrete Fourier transform (DFT) matrix and tailored to a direct silicon implementation.
Resumo:
Details of a new low power FFT processor for use in digital television applications are presented. This has been fabricated using a 0.6 µm CMOS technology and can perform a 64 point complex forward or inverse FFT on real-rime video at up to 18 Megasamples per second. It comprises 0.5 million transistors in a die area of 7.8×8 mm and dissipates 1 W. Its performance, in terms of computational rate per area per watt, is significantly higher than previously reported devices, leading to a cost-effective silicon solution for high quality video processing applications. This is the result of using a novel VLSI architecture which has been derived from a first principles factorisation of the DFT matrix and tailored to a direct silicon implementation.
Resumo:
In this work, we present a novel method to compensate the movement in images acquired during free breathing using first-pass gadolinium enhanced, myocardial perfusion magnetic resonance imaging (MRI). First, we use independent component analysis (ICA) to identify the optimal number of independent components (ICs) that separate the breathing motion from the intensity change induced by the contrast agent. Then, synthetic images are created by recombining the ICs, but other then in previously published work (Milles et al. 2008), we omit the component related to motion, and therefore, the resulting reference image series is free of motion. Motion compensation is then achieved by using a multi-pass non-rigid image registration scheme. We tested our method on 15 distinct image series (5 patients) consisting of 58 images each and we validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration. The average correlation to the manually obtained curves before registration 0:89 0:11 was increased to 0:98 0:02
Resumo:
Images acquired during free breathing using first-pass gadolinium-enhanced myocardial perfusion magnetic resonance imaging (MRI) exhibit a quasiperiodic motion pattern that needs to be compensated for if a further automatic analysis of the perfusion is to be executed. In this work, we present a method to compensate this movement by combining independent component analysis (ICA) and image registration: First, we use ICA and a time?frequency analysis to identify the motion and separate it from the intensity change induced by the contrast agent. Then, synthetic reference images are created by recombining all the independent components but the one related to the motion. Therefore, the resulting image series does not exhibit motion and its images have intensities similar to those of their original counterparts. Motion compensation is then achieved by using a multi-pass image registration procedure. We tested our method on 39 image series acquired from 13 patients, covering the basal, mid and apical areas of the left heart ventricle and consisting of 58 perfusion images each. We validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration of 13 patient data sets (39 distinct slices). We compared linear, non-linear, and combined ICA based registration approaches and previously published motion compensation schemes. Considering run-time and accuracy, a two-step ICA based motion compensation scheme that first optimizes a translation and then for non-linear transformation performed best and achieves registration of the whole series in 32 ± 12 s on a recent workstation. The proposed scheme improves the Pearsons correlation coefficient between manually and automatically obtained time?intensity curves from .84 ± .19 before registration to .96 ± .06 after registration
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnoloigia, 2016.
Resumo:
The contributions of this dissertation are in the development of two new interrelated approaches to video data compression: (1) A level-refined motion estimation and subband compensation method for the effective motion estimation and motion compensation. (2) A shift-invariant sub-decimation decomposition method in order to overcome the deficiency of the decimation process in estimating motion due to its shift-invariant property of wavelet transform. ^ The enormous data generated by digital videos call for an intense need of efficient video compression techniques to conserve storage space and minimize bandwidth utilization. The main idea of video compression is to reduce the interpixel redundancies inside and between the video frames by applying motion estimation and motion compensation (MEMO) in combination with spatial transform coding. To locate the global minimum of the matching criterion function reasonably, hierarchical motion estimation by coarse to fine resolution refinements using discrete wavelet transform is applied due to its intrinsic multiresolution and scalability natures. ^ Due to the fact that most of the energies are concentrated in the low resolution subbands while decreased in the high resolution subbands, a new approach called level-refined motion estimation and subband compensation (LRSC) method is proposed. It realizes the possible intrablocks in the subbands for lower entropy coding while keeping the low computational loads of motion estimation as the level-refined method, thus to achieve both temporal compression quality and computational simplicity. ^ Since circular convolution is applied in wavelet transform to obtain the decomposed subframes without coefficient expansion, symmetric-extended wavelet transform is designed on the finite length frame signals for more accurate motion estimation without discontinuous boundary distortions. ^ Although wavelet transformed coefficients still contain spatial domain information, motion estimation in wavelet domain is not as straightforward as in spatial domain due to the shift variance property of the decimation process of the wavelet transform. A new approach called sub-decimation decomposition method is proposed, which maintains the motion consistency between the original frame and the decomposed subframes, improving as a consequence the wavelet domain video compressions by shift invariant motion estimation and compensation. ^