972 resultados para Mortars coating. Construction waste. Recycled aggregate
Resumo:
The construction industry is responsible for generating a lot of waste because of their activities. Consequently, it is noticeable the occurrence of environmental problems in terms of its disposal in inappropriate places. Faced with this problem, some studies have been conducted with the aim of developing technologies and alternatives for recycling construction and demolition waste (CDW), motivated by the scarcity of natural resources and reduction of environmental problems generated. The research aims to characterize the recycled aggregates derived from construction and demolition waste (CDW) produced in the Greater Natal-RN and analyze the performance of mortar coating produced with recycled aggregates. The study includes the chemical , physical and microstructural characterization of recycled aggregates , as well as conducting microscopic analysis and laboratory tests in the fresh state (consistency index , water retention , bulk density and content of entrained air ) and in the hardened state ( compressive strength , tensile strength in bending , water absorption by immersion and capillary , mass density and void ratio ) for mortars produced from different levels of substitution of aggregates ( 0, 20 %, 40 %, 60 %, 80 % and 100 %). The results were satisfactory, providing mortars produced with recycled aggregates, smaller mass density and dynamic modulus values as well as an increase in the rates of absorption and porosity. The tensile strength in bending and compression for TP1 (1:2:8) trait were lower for mortars produced with recycled aggregates and the best result was 20% for replacement. For the TP2 (1:8) mapping, there was an increase in resistance to traction and compression and the best result was for 100% replacement of natural aggregates by recycled. The experiments led to the conclusion that the technical and economic point of view that the mortars produced with recycled aggregates can be used in construction, only if there is an effective control in production processes of recycled aggregate and at the dosage of mortars
Resumo:
This study presents a methodology for the characterization of construction and demolition (C&D) waste recycled aggregates based on a combination of analytical techniques (X-ray fluorescence (XRF), soluble ions, semi-quantitative X-ray diffraction (XRD), thermogravimetric analysis (TCA-DTG) and hydrochloric acid (HCl) selective dissolution). These combined analytical techniques allow for the estimation of the amount of cement paste, its most important hydrated and carbonated phases, as well as the amount of clay and micas. Details of the methodology are presented here and the results of three representative C&D samples taken from the Sao Paulo region in Brazil are discussed. Chemical compositions of mixed C&D aggregate samples have mostly been influenced by particle size rather than the visual classification of C&D into red or grey and geographical origin. The amount of measured soluble salts in C&D aggregates (0.15-25.4 mm) is lower than the usual limits for mortar and concrete production. The content of porous cement paste in the C&D aggregates is around 19.3% (w/w). However, this content is significantly lower than the 43% detected for the C&D powders (< 0.15 min). The clay content of the powders was also high, potentially resulting from soil intermixed with the C&D waste, as well as poorly burnt red ceramic. Since only about 50% of the measured CaO is combined with CO(2), the powders have potential use as raw materials for the cement industry. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
To date, glass fibre reinforced polymer (GFRP) waste recycling is very limited and restricted by thermoset nature of binder matrix and lack of economically viable enduse applications for the recyclates. In this study, efforts were made in order to recycle grinded GFRP waste proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, a mix of powdered and fibrous materials, were incorporated into polyester based mortars as fine aggregate and filler replacements, at different load contents (between 4% up to 12% of total mass) and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Test results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse in concrete-polymer composites.
Resumo:
Due to their exposure to environmental conditions, outer coatings composed by render and painting system are usually the first construction elements to deteriorate and require intervention. A correct conservation and rehabilitation of these materials is fundamental once they provide protection to other façade materials. It is known that old mortar renders were essentially air lime based mortars. To maintain the integrity of the whole wall-render elements, the image of the building and to avoid accelerated degradation, conservation and rehabilitation must be implemented with compatible mortars. As that, lime based mortars would be preferable. It was also common, in ancient renders, the incorporation of ceramic residues, which is, nowadays, an abundant material, especially in Central Region of Portugal. The reuse of these materials has great relevance once their landfilling causes serious environmental issues. In an attempt to combine the environmental and technical advantages of the use of ceramic waste in mortars’ production for rehabilitation purposes, a research has been developed at the University of Coimbra, in cooperation with Nova University of Lisbon, on the long term behaviour of air lime mortars with ceramic residues. In this paper the most significant up to one year results of an experimental campaign with air lime mortars with 1:3 and 1:2 volumetric proportions and ceramic residues are presented.
Resumo:
The management of construction waste is important today. The scarcity in the availability of aggregate for the production of concrete is one of the important problems facing by the construction industry. Appropriate use of the construction waste is a solution to the fast degradation of virgin raw materials in the construction industry. This paper enlightens the importance of reduce, reuse and recycle (3R) concept for managing the construction waste in India
Resumo:
This paper presents a study on applying an integrated Global Position System (GPS) and Geographacial Information System (GIS) technology to the reduction of construction waste. During the study, a prototype study is developed from automatic data capture system such as the barcoding system for construction material and equipment (M&E) management onsite, whilst the integrated GPS and GIS technology is combined to the M&E system based on the Wide Area Network (WAN). Then, a case study is conducted to demonstrate the deployment of the system. Experimental results indicate that the proposed system can minimize the amount of onsite material wastage.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The properties of recycled aggregate produced from mixed (masonry and concrete) construction and demolition (C&D) waste are highly variable, and this restricts the use of such aggregate in structural concrete production. The development of classification techniques capable of reducing this variability is instrumental for quality control purposes and the production of high quality C&D aggregate. This paper investigates how the classification of C&D mixed coarse aggregate according to porosity influences the mechanical performance of concrete. Concretes using a variety of C&D aggregate porosity classes and different water/cement ratios were produced and the mechanical properties measured. For concretes produced with constant volume fractions of water, cement, natural sand and coarse aggregate from recycled mixed C&D waste, the compressive strength and Young modulus are direct exponential functions of the aggregate porosity. Sink and float technique is a simple laboratory density separation tool that facilitates the separation of cement particles with lower porosity, a difficult task when done only by visual sorting. For this experiment, separation using a 2.2 kg/dmA(3) suspension produced recycled aggregate (porosity less than 17%) which yielded good performance in concrete production. Industrial gravity separators may lead to the production of high quality recycled aggregate from mixed C&D waste for structural concrete applications.
Resumo:
The aim of this paper is to verify the influence of composition variability of recycled aggregates (RA) of construction and demolition wastes (CDW) on the performance of concretes. Performance was evaluated building mathematical models for compressive strength, modulus of elasticity and drying shrinkage. To obtain such models, an experimental program comprising 50 concrete mixtures was carried out. Specimens were casted, tested and results for compressive strength, modulus of elasticity and drying shrinkage were statistically analyzed. Models inputs are CDW composition observed at seven Brazilian cities. Results confirm that using RA from CDW for concrete building is quite feasible, independently of its composition, once compressive strength and modulus of elasticity still reached considerable values. We concluded the variability presented by recycled aggregates of CDW does not compromise their use for concrete building. However, this information must be used with caution, and experimental tests should always be performed to certify concrete properties.
Resumo:
Research on the use of Construction and Demolition Waste (CDW) as recycled aggregate (in particular crushed concrete) for the production of new concrete has by now established the feasibility of this environmentally-friendly use of otherwise harmful waste. However, contrary to conventional concrete (CC), no large applications of concrete made with recycled concrete have been made and there is still a lack of knowledge in some areas of production and performance of recycled aggregate concrete (RAC). One issue concerns curing conditions: these greatly affect the performance of concrete made on site and some potential users of RAC wonder how RAC is affected by far-from-ideal curing conditions. This paper shows the main results of experiments to determine the influence of different curing conditions on the mechanical performance of concrete made with coarse recycled aggregate from crushed concrete. The properties analyzed include compressive strength, splitting tensile strength, modulus of elasticity, and abrasion resistance. The general conclusion in terms of mechanical performance is that RAC is affected by curing conditions roughly in the same way as CC. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Concern for the environment has lately heightened awareness about the need for recycling in the construction industry. However, some standards, such as the Spanish standard, only accept the recycling of aggregates derived from concrete, which limits the extensive use of construction and demolition waste, which are produced in much bigger volumes. The aim of this work was to explore the possibility of using recycled mixed aggregates (RMA) in the preparation of precast non-structural concretes. To that end different percentages of natural aggregate were replaced by RMA in non-structural elements (25, 50, 75 and 100%). Contents of cement, water, and the dosages commonly used by companies were unchanged by the introduction of RMA. The characterization of the prepared elements has been done using the specific tests for each type of non-structural element (terrazzo for indoor use, hollow tiles, kerbstones and paving blocks): compression and flexural strength, water absorption, dimensional tolerances, abrasion and slipping resistance. The paving blocks, kerbstones, and hollow tiles prepared were tested for 360 days. The stability of the tested properties confirmed the possibility of using these wastes on an industrial scale satisfying the standard requirements. However, the surface of terrazzo with RMA is not as good as that prepared with natural aggregate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)