980 resultados para Morse oscillator


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mapping of the Wigner distribution function (WDF) for a given bound state onto a semiclassical distribution function (SDF) satisfying the Liouville equation introduced previously by us is applied to the ground state of the Morse oscillator. The purpose of the present work is to obtain values of the potential parameters represented by the number of levels in the case of the Morse oscillator, for which the SDF becomes a faithful approximation of the corresponding WDF. We find that for a Morse oscillator with one level only, the agreement between the WDF and the mapped SDF is very poor but for a Morse oscillator of ten levels it becomes satisfactory. We also discuss the limit h --> 0 for fixed potential parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the factorisation method in supersymmetric quantum mechanics the author determines new potentials from the Morse oscillator. This method is applied although the ladder operators are not used.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, the dissociation dynamics of heteronuclear diatomic molecules is investigated by means of the classical driven Morse oscillator. The interaction of the molecule and the laser field is represented through the product of the molecule dipole function and the electric field of the laser. This interaction may lead to the breaking of the chemical bound, that is, to the dissociation of the molecule. The work was developed in two parts. In the first part, we studied the dissociation as a function of the range of the permanent dipole. In the second part, we maximized the dissociation probability manipulating the parameters of the external field. We have observed that the dissociation can be controlled by means of variations of parameters associated with the range of the permanent dipole

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dissociation dynamics of heteronuclear diatomic molecules induced by infrared laser pulses is investigated within the framework of the classical driven Morse oscillator. The interaction between the molecule and the laser field described in the dipole formulation is given by the product of a time-dependent external field with a position-dependent permanent dipole function. The effects of changing the spatial range of the dipole function in the classical dissociation dynamics of large ensembles of trajectories are studied. Numerical calculations have been performed for distinct amplitudes and carrier frequencies of the external pulses and also for ensembles with different initial energies. It is found that there exist a set of values of the dipole range for which the dissociation probability can be completely suppressed. The dependence of the dissociation on the dipole range is explained through the examination of the Fourier series coefficients of the dipole function in the angle variable of the free system. In particular, the suppression of dissociation corresponds to dipole ranges for which the Fourier coefficients associated with nonlinear resonances are null and the chaotic region in the phase space is reduced to thin layers. In this context, it is shown that the suppression of dissociation of heteronuclear molecules for certain frequencies of the external field is a consequence of the finite range of the corresponding permanent dipole. © 2013 American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we investigate the dissociation of heteronuclear diatomic molecules subjected to laser pulses. This phenomenon can be modeled by the classical forced Morse oscillator. This system presents a chaotic dynamics associated with the anharmonicity of the internuclear potential and with the coupling of permanent dipole of molecule with the electric field of laser. We want to verify how the dissociation probability evolves while we change the intensity and frequency of laser. We study the phase space of molecules to have a better understanding of system dynamics. We make the calculations changing two parameters of laser (intensity and frequency) and checking how this parameters influences on molecule dissociation. We compare the results of HF molecule (Fluoride acid) and CO molecule (Carbon monoxide) to check how the dipole moment of each molecule can influence on laser interaction

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the formation of molecules under the action of external field acting during the atomic collision. To describe this process, the collision of atomic pairs, we use the Morse oscillator model driven The study was developed from the standpoint of classical mechanics by analyzing the sensitivity of the system with respect to initial conditions, the verification of chaotic dynamics associated with the process of formation of molecules with laser and analysis of system dynamics and the likelihood of photoassociation in response to the external field parameters

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pour décrire les vibrations à l'intérieur des molécules diatomiques, le potentiel de Morse est une meilleure approximation que le système de l'oscillateur harmonique. Ainsi, en se basant sur la définition des états cohérents et comprimés donnée dans le cadre du problème de l'oscillateur harmonique, la première partie de ce travail suggère une construction des états cohérents et comprimés pour le potentiel de Morse. Deux types d’états seront construits et leurs différentes propriétés seront étudiées en portant une attention particulière aux trajectoires et aux dispersions afin de confirmer la quasi-classicité de ces états. La deuxième partie de ce travail propose d'insérer ces deux types d’états cohérents et comprimés de Morse dans un miroir semi-transparent afin d'introduire un nouveau moyen de créer de l'intrication. Cette intrication sera mesurée à l’aide de l’entropie linéaire et nous étudierons la dépendance par rapport aux paramètres de cohérence et de compression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Variational Method is applied within the context of Supersymmetric Quantum Mechanics to provide information about the energy and eigenfunction of the lowest levels of a Hamiltonian. The approach is illustrated by the case of the Morse potential applied to several diatomic molecules and the results are compared with stabilished results. (C) 2000 Elsevier Science B.V.