981 resultados para Morphological parameters
Resumo:
Relaxin is able to inhibit spontaneous, oxytocin-and prostaglandin-driven uterine contractions. The intracellular mechanism of action of relaxin on uterine relaxation had previously been studied using isometrically suspended uterine strips. Since uterine strips contain stroma as well as myometrium, the changes in biochemical parameters induced by relaxin treatment may not occur in the same cell types responsible for the physical changes. In these studies, cultures of enriched populations of rat myometrial cells were used to investigate the effect of relaxin on biochemical and morphological parameters which are related to relaxation.^ Under optimal culture conditions (initial plating density 1 - 1.5 x 10('6)cells/ml, 3 ml/35 mm dish, 2 days culture), enzymatically isolated rat myometrial cells were able to respond to relaxin with cAMP elevation. Relaxin elevated cAMP levels in the presence but not the absence of 0.1 mM methylisobutylxanthine or 0.4 um forskolin in a time- and concentration-dependent manner. In contrast, isoproterenol was able to elevate cAMP levels in the presence and absence of 0.1 mM methylisobutylxanthine.^ Oxytocin treatment caused a decrease in mean cell length and area of myometrial cells in culture which could be considered analogous to contraction. Under optimal culture conditions, relaxin increased myometrial cell length and area (i.e. analogous to relaxation) of oxytocin-treated cells in a time- and concentration-dependent manner. Other relaxants such as isoproterenol and dibutyryl cAMP also increased cell length and area of oxytocin - treated myometrial cells in culture.^ Under optimal culture conditions, relaxin decreased myosin light chain kinase activity in a time-and concentration-dependent manner by increasing the K(,50) of the enzyme for calmodulin (CaM), i.e. decreasing the affinity of the enzyme for CaM. The decrease in the affinity of myosin light chain kinase for CaM may be due to the phosphorylation of the enzyme by cAMP-dependent protein kinase. Relaxin also decreased the Ca('2+)(.)CaM-independent myosin light chain kinase activity to a lesser extent than that of the Ca('2+)(.)CaM-dependent enzyme activity. This was not attributable to a decrease in the affinity of the enzyme for myosin in myometrial cells in culture, in contrast to the finding of such a change following relaxin treatment of uterine strips. Further studies are required to clarify this point.^ There was a temporal association between the effects of relaxin on elevation of cAMP levels in the presence of 0.4 uM forskolin, increase in cell length and decrease in myosin light chain kinase activity. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^
Resumo:
Both MI and MII triploids were successfully produced by heat shock in Chinese shrimp Fenneropenaeus chinensis. The inducing conditions for MI and MII triploids were optimized. The highest inducing rate obtained for MI triploids reached more than 90%, and that for MII triploids reached nearly 100% at the nauplius stage as evaluated using flow cytometry. Comparisons of survival rates at larval stages between triploids and diploids or diploids experiencing treatment and diploids without treatment were performed. At larval stage from nauplii to postlarvae, heat shocks lowered survival at larval stages even if the ploidy was not changed. Ploidy did not affect shrimp larvae survival, and no significant difference was found in the survival of shrimp larvae between MI and MII triploids. Highly significant differences were observed in the morphology of triploids and diploids, and no apparent difference was found in the morphology of MI and MII triploids at the grow-out stages. Discriminating formulae for triploid and diploid shrimp at grow-out stage were developed and could be used to distinguish triploids from diploids based on morphological parameters. MI and MII triploids of shrimp have the potential to be used in aquaculture.
Resumo:
Aging is a physiological process characterized by a progressive decline of the “cellular homeostatic reserve”, refereed as the capability to respond suitably to exogenous and endogenous stressful stimuli. Due to their high energetic requests and post-mitotic nature, neurons are peculiarly susceptible to this phenomenon. However, the aged brain maintains a certain level of adaptive capacities and if properly stimulated may warrant a considerable functional recovery. Aim of the present research was to verify the plastic potentialities of the aging brain of rats subjected to two kind of exogenous stimuli: A) the replacement of the standard diet with a ketogenic regimen (the change forces the brain to use ketone bodies (KB) in alternative to glucose to satisfy the energetic needs) and B) a behavioural task able to induce the formation of inhibitory avoidance memory. A) Fifteen male Wistar rats of 19 months of age were divided into three groups (average body weight pair-matched), and fed for 8 weeks with different dietary regimens: i) diet containing 10% medium chain triglycerides (MCT); ii) diet containing 20% MCT; iii) standard commercial chow. Five young (5 months of age) and five old (26-27 months of age) animals fed with the standard diet were used as further controls. The following morphological parameters reflecting synaptic plasticity were evaluated in the stratum moleculare of the hippocampal CA1 region (SM CA1), in the outer molecular layer of the hippocampal dentate gyrus (OML DG), and in the granule cell layer of the cerebellar cortex (GCL-CCx): average area (S), numeric density (Nvs), and surface density (Sv) of synapses, and average volume (V), numeric density (Nvm), and volume density (Vv) of synaptic mitochondria. Moreover, succinic dehydrogenase (SDH) activity was cytochemically determined in Purkinje cells (PC) and V, Nvm, Vv, and cytochemical precipitate area/mitochondrial area (R) of SDH-positive mitochondria were evaluated. In SM CA1, MCT-KDs induced the early appearance of the morphological patterns typical of old animals: higher S and V, and lower Nvs and Nvm. On the contrary, in OML DG, Sv and Vv of MCT-KDs-fed rats were higher (as a result of higher Nvs and Nvm) vs. controls; these modifications are known to improve synaptic function and metabolic supply. The opposite effects of MCT-KDs might reflect the different susceptibility of these brain regions to the aging processes: OML DG is less vulnerable than SM CA1, and the reactivation of ketone bodies uptake and catabolism might occur more efficiently in this region, allowing the exploitation of their peculiar metabolic properties. In GCL-CCx, the results described a new scenario in comparison to that found in the hippocampal formation: 10%MCT-KD induced the early appearance of senescent patterns (decreased Nvs and Nvm; increased V), whereas 20%MCT-KD caused no changes. Since GCL-CCx is more vulnerable to age than DG, and less than CA1, these data further support the hypothesis that MCT-KDs effects in the aging brain critically depend on neuronal vulnerability to age, besides MCT percentage. Regarding PC, it was decided to evaluate only the metabolic effect of the dietetic regimen (20%MCT-KD) characterized by less side effects. KD counteracted age-related decrease in numeric density of SDH-positive mitochondria, and enhanced their energetic efficiency (R was significantly higher in MCT-KD-fed rats vs. all the controls). Since it is well known that Purkinje and dentate gyrus cells are less vulnerable to aging than CA1 neurons, these results corroborate our previous hypothesis. In conclusion, the A) experimental line provides the first evidence that morphological and functional parameters reflecting synaptic plasticity and mitochondrial metabolic competence may be modulated by MCT-KDs in the pre-senescent central nervous system, and that the effects may be heterogeneous in different brain regions. MCT-KDs seem to supply high energy metabolic intermediates and to be beneficial (“anti-aging”) for those neurons that maintain the capability to exploit them. This implies risks but also promising potentialities for the therapeutic use of these diets during aging B) Morphological parameters of synapses and synaptic mitochondria in SM CA1 were investigated in old (26-27 month-old) female Wistar rats following a single trial inhibitory avoidance task. In this memory protocol animals learn to avoid a dark compartment in which they received a mild, inescapable foot-shock. Rats were tested 3 and 6 or 9 hours after the training, divided into good and bad responders according to their performance (retention times above or below 100 s, respectively) and immediately sacrificed. Nvs, S, Sv, Nvm, V, and Vv were evaluated. In the good responder group, the numeric density of synapses and mitochondria was significantly higher and the average mitochondrial volume was significantly smaller 9 hours vs. 6 hours after the training. No significant differences were observed among bad responders. Thus, better performances in passive avoidance memory task are correlated with more efficient plastic remodeling of synaptic contacts and mitochondria in hippocampal CA1. These findings indicate that maintenance of synaptic plastic reactivity during aging is a critical requirement for preserving long-term memory consolidation.
Resumo:
Aim Our aim was to discriminate different species of Pinus via pollen analysis in order to assess the responses of particular pine species to orbital and millennial-scale climate changes, particularly during the last glacial period. Location Modern pollen grains were collected from current pine populations along transects from the Pyrenees to southern Iberia and the Balearic Islands. Fossil pine pollen was recovered from the south-western Iberian margin core MD95-2042. Methods We measured a set of morphological traits of modern pollen from the Iberian pine species Pinus nigra, P. sylvestris, P. halepensis, P. pinea and P. pinaster and of fossil pine pollen from selected samples of the last glacial period and the early to mid-Holocene. Classification and regression tree (CART) analysis was used to establish a model from the modern dataset that discriminates pollen from the different pine species and allows identification of fossil pine pollen at the species level. Results The CART model was effective in separating pollen of P. nigra and P. sylvestris from that of the Mediterranean pine group (P. halepensis, P. pinea and P. pinaster). The pollen of Pinus nigra diverged from that of P. sylvestris by having a more flattened corpus. Predictions using this model suggested that fossil pine pollen is mainly from P. nigra in all the samples analysed. Pinus sylvestris was more abundant in samples from Greenland stadials than Heinrich stadials, whereas Mediterranean pines increased in samples from Greenland interstadials and during the early to mid-Holocene. Main conclusions Morphological parameters can be successfully used to increase the taxonomic resolution of fossil pine pollen at the species level for the highland pines (P. nigra and P. sylvestris) and at the group of species level for the Mediterranean pines. Our study indicates that P. nigra was the dominant component of the last glacial south-western/central Iberian pinewoods, although the species composition of these woodlands varied in response to abrupt climate changes.
Resumo:
This study examined how the floc characteristics affect dewaterability of activated sludge. The floc properties were characterized by morphological parameters (floc size distribution, fractal dimension and filament index), physical properties (flocculating ability, surface charge, relative hydrophobicity and viscosity), and chemical constituents in sludge and extracted extracellular polymeric substances (EPS), including the polymeric compounds protein, humic substances, carbohydrates and the ions Ca2+, Mg2+, Fe3+ and Al3+. The dewaterability was defined in terms of the bound water content and capillary suction time (CST). The bound water and CST corresponded to a similar indication with respect to dewaterability of activated sludge. The floc physical parameters were the most important factors which effect significantly on the water binding ability of the sludge flocs. The morphological characteristics had relatively weak impact on the dewaterability. The polymeric components protein and carbohydrate had a significant contribution to enhance the water binding ability of the sludge flocs. The effect of humic substances in the sludge on the dewaterability was, however, insignificant. The CST had good statistical correlations with the polymeric constituents measured in both sludge and the extracted EPS, and the bound water was only correlated well with the individual polymers measured in the sludge. High concentration of Ca2+, Mg2+, Fe3+ and Al3+ had significant improvement for dewaterability. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The impact of ambient ultraviolet (UV)-B radiation on the endemic bryophyte, Grimmia antarctici, was studied over 14 months in East Antarctica. Over recent decades, Antarctic plants have been exposed to the largest relative increase in UV-B exposure as a result of ozone depletion. We investigated the effect of reduced UV and visible radiation on the pigment concentrations, surface reflectance and physiological and morphological parameters of this moss. Plexiglass screens were used to provide both reduced UV levels (77%) and a 50% decrease in total radiation. The screen combinations were used to separate UV photoprotective from visible photoprotective strategies, because these bryophytes are growing in relatively high light environments compared with many mosses. G. antarctici was affected negatively by ambient levels of UV radiation. Chlorophyll content was significantly lower in plants grown under near-ambient UV, while the relative proportions of photoprotective carotenoids, especially beta-carotene and zeaxanthin, increased. However, no evidence for the accumulation of UV-B-absorbing pigments in response to UV radiation was observed. Although photosynthetic rates were not affected, there was evidence of UV effects on morphology. Plants that were shaded showed fewer treatment responses and these were similar to the natural variation observed between moss growing on exposed microtopographical ridges and in more sheltered valleys within the turf. Given that other Antarctic bryophytes possess UV-B-absorbing pigments which should offer better protection under ambient UV-B radiation, these findings suggest that G. antarctici may be disadvantaged in some settings under a climate with continuing high levels of springtime UV-B radiation.
Resumo:
Several studies show that morphological changes of microglia over the course of inflammation are tightly coupled to function. However the progressive transformation into activated microglia is poorly characterized. AIMS: This study aimed to establish a spatiotemporal correlation between quantifiable morphological parameters of microglia and the spread of an acute ventricular inflammatory process. METHODS: Inflammation was induced by a single injection of the enzyme neuraminidase within the lateral ventricle of rats. Animals were sacrificed 2, 4 and 12 hours after injection. Coronal slices were immunostained with Iba1 to label microglia and with IL1β to delimit the spread of inflammation. Digital images were obtained by scanning the labelled sections. Single microglia images were randomly selected from periventricular areas of caudate putamen, hippocampus and hypothalamus. FracLac for ImageJ software was used to measure the following morphological parameters: fractal dimension, lacunarity, area, perimeter and density. RESULTS: Significant differences were found in fractal dimension, lacunarity, perimeter and density of microglia cells of neuraminidase injected rats compared to sham animals. However no differences were found in the parameter “area”. In hipoccampus there was a delay in the significant change of the measured parameters. These morphological changes correlated with IL1β-expression in the same areas. CONCLUSIONS: Ventricular inflammation induced by neuraminidase provokes quantifiable morphological changes in microglia restricted to areas labelled with IL1β. Morphological parameters of microglia such as fractal dimension, lacunarity, perimeter and density are sensitive and valuable tools to quantify activation. However, the extensively used parameter “area” did not change upon microglia activation.
Resumo:
Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.
Resumo:
INTRODUCTION It is known that the vascular morphology and functionality are changed following closed soft tissue trauma (CSTT) [1], and bone fractures [2]. The disruption of blood vessels may lead to hypoxia and necrosis. Currently, most clinical methods for the diagnosis and monitoring of CSTT with or without bone fractures are primarily based on qualitative measures or practical experience, making the diagnosis subjective and inaccurate. There is evidence that CSTT and early vascular changes following the injury delay the soft tissue tissue and bone healing [3]. However, a precise qualitative and quantitative morphological assessment of vasculature changes after trauma is currently missing. In this research, we aim to establish a diagnostic framework to assess the 3D vascular morphological changes after standardized CSTT in a rat model qualitatively and quantitatively using contrast-enhanced micro-CT imaging. METHODS An impact device was used for the application of a controlled reproducible CSTT to the left thigh (Biceps Femoris) of anaesthetized male Wistar rats. After euthanizing the animals at 6 hours, 24 hours, 3 days, 7 days, or 14 days after trauma, CSTT was qualitatively evaluated by macroscopic visual observation of the skin and muscles. For visualization of the vasculature, the blood vessels of sacrificed rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil, MV 122, Flowtech, USA) using an infusion pump. After allowing the contrast agent to polymerize overnight, both hind-limbs were dissected, and then the whole injured and contra-lateral control limbs were imaged using a micro-CT scanner (µCT 40, Scanco Medical, Switzerland) to evaluate the vascular morphological changes. Correlated biopsy samples were also taken from the CSTT region of both injured and control legs. The morphological parameters such as the vessel volume ratio (VV/TV), vessel diameter (V.D), spacing (V.Sp), number (V.N), connectivity (V.Conn) and the degree of anisotropy (DA) were then quantified by evaluating the scans of biopsy samples using the micro-CT imaging system. RESULTS AND DISCUSSION A qualitative evaluation of the CSTT has shown that the developed impact protocols were capable of producing a defined and reproducible injury within the region of interest (ROI), resulting in a large hematoma and moderate swelling in both lateral and medial sides of the injured legs. Also, the visualization of the vascular network using 3D images confirmed the ability to perfuse the large vessels and a majority of the microvasculature consistently (Figure 1). Quantification of the vascular morphology obtained from correlated biopsy samples has demonstrated that V.D and V.N and V.Sp were significantly higher in the injured legs 24 hours after impact in comparison with the control legs (p<0.05). The evaluation of the other time points is currently progressing. CONCLUSIONS The findings of this research will contribute to a better understanding of the changes to the vascular network architecture following traumatic injuries and during healing process. When interpreted in context of functional changes, such as tissue oxygenation, this will allow for objective diagnosis and monitoring of CSTT and serve as validation for future non-invasive clinical assessment modalities.
Resumo:
INTRODUCTION There is evidence that the reduction of blood perfusion caused by closed soft tissue trauma (CSTT) delays the healing of the affected soft tissues and bone [1]. We hypothesise that the characterisation of vascular morphology changes (VMC) following injury allows us to determine the effect of the injury on tissue perfusion and thereby the severity of the injury. This research therefore aims to assess the VMC following CSTT in a rat model using contrast-enhanced micro-CT imaging. METHODOLOGY A reproducible CSTT was created on the left leg of anaesthetized rats (male, 12 weeks) with an impact device. After euthanizing the animals at 6 and 24 hours following trauma, the vasculature was perfused with a contrast agent (Microfil, Flowtech, USA). Both hind-limbs were dissected and imaged using micro-CT for qualitative comparison of the vascular morphology and quantification of the total vascular volume (VV). In addition, biopsy samples were taken from the CSTT region and scanned to compare morphological parameters of the vasculature between the injured and control limbs. RESULTS AND DISCUSSION While the visual observation of the hindlimb scans showed consistent perfusion of the microvasculature with microfil, enabling the identification of all major blood vessels, no clear differences in the vascular architecture were observed between injured and control limbs. However, overall VV within the region of interest (ROI)was measured to be higher for the injured limbs after 24h. Also, scans of biopsy samples demonstrated that vessel diameter and density were higher in the injured legs 24h after impact. CONCLUSION We believe these results will contribute to the development of objective diagnostic methods for CSTT based on changes to the microvascular morphology as well as aiding in the validation of future non-invasive clinical assessment modalities.
Resumo:
INTRODUCTION Closed soft tissue trauma (CSTT) can be the result of a blunt impact, or a prolonged crush injury and involves damage to the skin, muscles and the neurovascular system. It causes a variety of symptoms such as haematoma and in severe cases may result in hypoxia and necrosis. There is evidence that early vasculature changes following the injury delays the tissue healing [1]. However, a precise qualitative and quantitative morphological assessment of vasculature changes after trauma and the effect of this on CSTT healing is currently missing. Research aims: Developing an experimental rat model to characterise the structural changes to the vasculature after trauma qualitatively and quantitatively using micro CT. MATERIAL AND METHODS An impact device was developed to apply a controlled reproducible CSTT to the left thigh (Biceps Femoris) of anaesthetised rats [3]. After euthanizing the animals at 6 hours after trauma, CSTT was qualitatively evaluated by macroscopic observations of the skin and muscles. For vasculature visualisation, the blood vessels of sacrificed rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil) using an infusion pump (Figure 4). The overall changes to the vasculature as a result of impact trauma were characterised qualitatively based on the 3D reconstructed images of the vasculature (Figure 5). For a smaller region of interest, the morphological parameters such as vessel thickness (diameter), spacing, and average number per volume were quantified using the scanner’s software. RESULTS AND DISCUSSION Visual observation of CSTT has revealed a haematoma in some animals (Figure 3). Micro CT images indicate good perfusion of the vasculature with contrast agent, allowing the major vessels to be identified (Figure 5). Qualitatively and quantitatively, no differences between injured and non-injured legs were observed at 6 h after trauma. Further time points of 12h, 24h, 3 days and 14 days after trauma will be characterised for identifying temporal changes of the vasculature during healing. Histomorphometical studies are required for validation of the results derived from the micro CT imaging. CONCLUSION AND FUTURE DIRECTION Findings of this research may contribute towards the establishment of a fundamental basis for the quantitative assessment and monitoring of CSTT based on microvasculature changes after trauma, which will ultimately allow for optimising the clinical treatment and improve patient outcomes.
Resumo:
INTRODUCTION Icing (cryotherapy) is being widely used for the treatment of closed soft tissue trauma (CSTT), such as those resulting from sport injuries. It is believed that cryotherapy induces vasoconstriction and through this mechanism reduces inflammation [1]. However, the impact of this technique on the healing of impaired vasculature and muscle injuries following trauma remains controversial. Recent evidence suggests that the muscle regeneration is delayed after cryotherapy [2]. Consequently, we aimed to investigate the effect of cryotherapy on the vascular morphology following CSTT using an experimental model in rats by contrast-enhanced micro-CT imaging. METHODS Fifty four rats were divided into three main groups: control (no injury, n=6), sham (CSTT but no icing treatment, n=24) and icing (CSTT, treated with one session of ice block massaged directly on the injured muscle for 20 minutes, n=24). The CSTT was induced to the left thigh (Biceps Femoris) of anaesthetised rats (Male, Wistar) to create a standardized and reproducible vascular and muscle injury using an impact device [3]. Following trauma, animals were euthanized after 1, 3, 7, and 28 days healing time (n=6 for each time point). For a three-dimensional vascular morphological assessment, the blood vessels of euthanised rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil, MV 122, Flowtech, USA) using an infusion pump. Both hind-limbs were dissected, and then the injured and non-injured limbs were imaged using a micro-CT scanner (µCT 40, Scanco Medical, Switzerland) and total volume of the perfused blood vessels (TVV) was calculated. More detailed morphological parameters such as vessel volume (VV), diameter (VD), spacing (VSp), number (VN) and connectivity (VConn) were quantified through high resolution (6 µm), micro-CT-scanned biopsy samples (diameter: 8mm) taken directly from the region of the injured muscles. The biopsies were then analysed histologically to confirm the results derived from contrast-enhanced micro-CT imaging. RESULTS AND DISCUSSION The TVV was significantly higher in the injured legs compared to the non-injured legs at day 1 and 7 in the sham group and at day 28 in both sham and icing groups. The biopsies from the injured legs of the icing group showed a significant reduction in VV, VN, VD, VConn and an increase in VSp compared to those in the sham and control groups at days 1, 3 and 7, post injury. While the injured legs of the sham group exhibited a decrease in VN and VConn 28 days post trauma, indicating a return to the original values prior to trauma, these parameters had increased in the icing group (Figure 1). Also, at day 1 post injury, VV and VD of the injured legs were significantly higher in the sham group compared to the icing group, which may be attributed to the effect of vasoconstriction induced by icing. Further histomorphological evaluation of day 1 post injury, indicated that although cryotherapy significantly reduced the injury size and influx of inflammatory cells, including macrophages and neutrophils, a delay in vascular and muscle fiber regeneration was found at later time points confirming other reports from the literature [2]. CONCLUSIONS We have demonstrated using micro-CT imaging that the vascular morphology changes after CSTT, and that its recovery is affected by therapeutic modalities such as icing. This may be useful for the development of future clinical monitoring, diagnosis and treatment of CSTT. While icing reduces the swelling after trauma, our results suggest that it may delay the recovery of the vasculature in the injured tissue.