5 resultados para Morphisme


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cette thèse présente quelques propriétés des sous-variétés lagrangiennes monotones. On résoud d'abord une conjecture de Barraud et Cornea dans le cadre monotone en montrant que le rayon de Gromov relatif à deux lagrangiennes dans la même classe d'isotopie hamiltonienne donne une borne inférieure à la distance de Hofer entre ces deux mêmes lagrangiennes. Le cas non-monotone de cette conjecture reste ouvert encore. On définit toutes les structures nécessaires à l'énoncé et à la preuve de cette conjecture. Deuxièmement, on définit une nouvelle version d'un morphisme de Seidel relatif à l'aide des cobordismes lagrangiens de Biran et Cornea. On montre que cette version est chaîne-homotope aux différentes autres versions apparaissant dans la littérature. Que toutes ces définitions sont équivalentes fait partie du folklore mais n'apparaît pas dans la littérature. On conclut par une conjecture qui identifie un triangle exact obtenu par chirurgie lagrangienne et un autre dû à Seidel et faisant intervenir le twist de Dehn symplectique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La construction d'un quotient, en topologie, est relativement simple; si $G$ est un groupe topologique agissant sur un espace topologique $X$, on peut considérer l'application naturelle de $X$ dans $X/G$, l'espace d'orbites muni de la topologie quotient. En géométrie algébrique, malheureusement, il n'est généralement pas possible de munir l'espace d'orbites d'une structure de variété. Dans le cas de l'action d'un groupe linéairement réductif $G$ sur une variété projective $X$, la théorie géométrique des invariants nous permet toutefois de construire un morphisme de variété d'un ouvert $U$ de $X$ vers une variété projective $X//U$, se rapprochant autant que possible d'une application quotient, au sens topologique du terme. Considérons par exemple $X\subseteq P^{n}$, une $k$-variété projective sur laquelle agit un groupe linéairement réductif $G$ et supposons que cette action soit induite par une action linéaire de $G$ sur $A^{n+1}$. Soit $\widehat{X}\subseteq A^{n+1}$, le cône affine au dessus de $\X$. Par un théorème de la théorie classique des invariants, il existe alors des invariants homogènes $f_{1},...,f_{r}\in C[\widehat{X}]^{G}$ tels que $$C[\widehat{X}]^{G}= C[f_{1},...,f_{r}].$$ On appellera le nilcone, que l'on notera $N$, la sous-variété de $\X$ définie par le locus des invariants $f_{1},...,f_{r}$. Soit $Proj(C[\widehat{X}]^{G})$, le spectre projectif de l'anneau des invariants. L'application rationnelle $$\pi:X\dashrightarrow Proj(C[f_{1},...,f_{r}])$$ induite par l'inclusion de $C[\widehat{X}]^{G}$ dans $C[\widehat{X}]$ est alors surjective, constante sur les orbites et sépare les orbites autant qu'il est possible de le faire; plus précisément, chaque fibre contient exactement une orbite fermée. Pour obtenir une application régulière satisfaisant les mêmes propriétés, il est nécessaire de jeter les points du nilcone. On obtient alors l'application quotient $$\pi:X\backslash N\rightarrow Proj(C[f_{1},...,f_{r}]).$$ Le critère de Hilbert-Mumford, dû à Hilbert et repris par Mumford près d'un demi-siècle plus tard, permet de décrire $N$ sans connaître les $f_{1},...,f_{r}$. Ce critère est d'autant plus utile que les générateurs de l'anneau des invariants ne sont connus que dans certains cas particuliers. Malgré les applications concrètes de ce théorème en géométrie algébrique classique, les démonstrations que l'on en trouve dans la littérature sont généralement données dans le cadre peu accessible des schémas. L'objectif de ce mémoire sera, entre autres, de donner une démonstration de ce critère en utilisant autant que possible les outils de la géométrie algébrique classique et de l'algèbre commutative. La version que nous démontrerons est un peu plus générale que la version originale de Hilbert \cite{hilbert} et se retrouve, par exemple, dans \cite{kempf}. Notre preuve est valide sur $C$ mais pourrait être généralisée à un corps $k$ de caractéristique nulle, pas nécessairement algébriquement clos. Dans la seconde partie de ce mémoire, nous étudierons la relation entre la construction précédente et celle obtenue en incluant les covariants en plus des invariants. Nous démontrerons dans ce cas un critère analogue au critère de Hilbert-Mumford (Théorème 6.3.2). C'est un théorème de Brion pour lequel nous donnerons une version un peu plus générale. Cette version, de même qu'une preuve simplifiée d'un théorème de Grosshans (Théorème 6.1.7), sont les éléments de ce mémoire que l'on ne retrouve pas dans la littérature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le th eor eme de Riemann-Roch originale a rme que pour tout morphisme propre f : Y ! X entre vari et es quasi-projectifs lisses sur un corps, et tout el ement a 2 K0(Y ) du groupe de Grothendieck des br es vectoriels on a ch(f!(a)) = f {u100000}Td(Tf ) ch(a) (cf. [BS58]). Ici ch est le caract ere de Chern, Td(Tf ) est la classe de Todd du br e tangent relative et f et f! sont les images directes de l'anneau de Chow et K0 respectivement. Apr es, Baum, Fulton et MacPherson ont d emontr e en [BFM75] le th eor eme de Riemann-Roch pour des morphismes localement intersection compl ete entre des sch emas alg ebriques (sch emas s epar es et localement de type ni sur un corps) projectifs et singuli eres. En [FG83] Fulton et Gillet ont d emontr e le th eor eme sans hypoth eses projectifs. L'extension a la th eorie K sup erieure pour des sch emas r eguli eres sur une base fut d emontr e par Gillet en [Gil81]. Le th eor eme de Riemann-Roch qu'il prouve est pour des morphismes projectifs entre des sch emas lisses et quasi-projectifs. Donc, dans le cas des sch emas sur un corps, le r esultat de Gillet n'inclus pas le th eor eme de [BFM75]. La plus grande g en eralisation du th eor eme de Riemann-Roch que je connais est [D eg14] et [HS15], o u D eglise et Holmstrom-Scholbach obtiennent ind ependamment le th eor eme de Riemann- Roch pour la K-th eorie sup erieure et les morphismes projectifs lic entre sch emas r eguli eres sur une base noetherienne de dimension nie... NOTA 520 8 El teorema de Riemann-Roch original de Grothendieck a rma que para todo mor smo propio f : Y ! X, entre variedades irreducibles quasiproyectivas lisas sobre un cuerpo, y todo elemento a 2 K0(Y ) del grupo de Grothendieck de brados vectoriales se satisface la relaci on ch(f!(a)) = f {u100000}Td(Tf ) ch(a) (cf. [BS58]). Recu erdese que ch denota el car acter de Chern, Td(Tf ) la clase de Todd del brado tangente relativo y f y f! las im agenes directas en el anillo de Chow y K0 respectivamente. M as tarde Baum, Fulton MacPherson probaron en [BFM75] el teorema de Riemann-Roch para mor smos localmente intersecci on completa entre esquemas algebraicos (es decir, esquemas separados localmente de tipo nito sobre cuerpo) proyectivos singulares. En [FG83] Fulton y Gillet probaron el teorema sin hip otesis proyectivas. La notable extensi on a la teor a K superior para esquemas regulares sobre una base fue probada por Gillet en [Gil81]. El teorema de Riemann-Roch all probado es para mor smos proyectivos entre esquemas lisos quasiproyectivos. Sin embargo, obs ervese que en el caso de esquemas sobre cuerpo el resultado de Gillet no recupera el teorema de [BFM75]. La mayor generalizaci on del teorema de Riemann-Roch que yo conozco es [D eg14] y [HS15] donde D eglise y Holmstrom-Scholbach obtuvieron independientemente el teorema de Riemann-Roch para teor a K superior y mor smos proyectivos lic entre esquemas regulares sobre una base noetheriana nito dimensional...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.