935 resultados para Montmorillonite, XRD, TG, Organoclays, Cationic surfactants
Resumo:
The aggregation property of multiheaded surfactants has been investigated by constant pressure molecular dynamics (MD) simulation in aqueous medium. The model multiheaded surfactants contain more than one headgroup (x = 2, 3, and 4) for a single tail group. This increases the hydrophilic charge progressively over the hydrophobic tail which has dramatic consequences in the aggregation behavior. In particular, we have looked at the change in the aggregation property such as critical micellar concentration (cmc), aggregation number, and size of the micelles for the multiheaded surfactants in water. We find with increasing number of headgroups of the Multiheaded surfactants that the cmc values increase and the aggregation numbers as well as the size of the micelles decrease. These trends are in agreement with the experimental findings as reported earlier with x = 1, 2, and 3. We also predict the aggregation properties of multiheaded surfactant With four headgroups (x = 4) for which no experimental studies exist yet.
Resumo:
A series of isomeric cationic surfactants (S1-S5) bearing a long alkyl chain that carries a 1,4-phenylene unit and a trimethyl ammonium headgroup was synthesized; the location of the phenyl ring within the alkyl tail was varied in an effort to understand its influence on the amphiphilic properties of the surfactants. The cmc's of the surfactants were estimated using ionic conductivity measurements and isothermal calorimetric titrations (ITC); the values obtained by the two methods were found to be in excellent agreement. The ITC measurements provided additional insight into the various thermodynamic parameters associated with the micellization process. Although all five surfactants have exactly the same molecular formula, their micellar properties were seen to vary dramatically depending on the location of the phenyl ring; the cmc was seen to decrease by almost an order of magnitude when the phenyl ring was moved from the tail end (cmc of S1 is 23 mM) to the headgroup region (cmc of S5 is 3 mM). In all cases, the enthalpy of micellization was negative but the entropy of micellization was positive, suggesting that in all of these systems the formation of micelles is both enthalpically and entropically favored. As expected, the decrease in cmc values upon moving the phenyl ring from the tail end to he headgroup region is accompanied by an increase in the thermodynamic driving force (Delta G) for micellization. To understand further the differences in the micellar structure of these surfactants, small-angle neutron scattering (SANS) measurements were carried out; these measurements reveal that the aggregation number of the micelles increases as the cmc decreases. This increase in the aggregation number is also accompanied by an increase in the asphericity of the micellar aggregate and a decrease in the fractional charge. Geometric packing arguments are presented to account for these changes in aggregation behavior as a function of phenyl ring location.
Resumo:
Measurements of small-angle neutron scattering (SANS) cross sections from different mixed micelles composed of CTAB and Br-, n-C16H33N+Me2-(CH2)(m)N+Me2-n-C16H33, Br- (16-m-16, 2Br(-), where m = 3, 5, and 10), in aqueous media (D2O) are reported. The data have been analyzed using the Hayter and Penfold model for macroion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the micelles. The aggregate composition matches with that predicted from an ideal mixing model. The SANS analysis further indicates that the extent of aggregate growth and the Variations of shapes of the mixed micelles could be modulated by the amount of dimeric surfactant present in these mixtures. With the spacer chain length m less than or equal to 4 in the dimeric surfactant, the propensity of micellar growth is particularly pronounced. The effect of the variation of the temperature for the mixed micellar system (23.1 mol % of 16-3-16, 2Br(-)) was also examined. The systemic microviscosities that the mixed micellar aggregates offer to a solubilized, extrinsic fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, were determined. The variation of the microviscosities of the mixed micelles as a function of percentages of the dimeric surfactants could be explained in terms of conformational variations and progressive looping of the spacer chain of dimeric surfactants in mixed micellar aggregates with increasing m values.
Resumo:
Excess intercalation of cationic surfactants into Na-montmorillonites (MMTs) was investigated in organically modified silicates (OMSs), synthesized with MMTs and octadecylammonium chloride (OAC) by systematically varying the surfactant loading level from 0.625 to 1, 1.25, 1.56, 2, and 2.5 with respect to the cation exchange capacity (CEC) of MMTs. Wide-angle X-ray diffraction and thermogravimetric analysis results indicated that the continuous increase of interlayer distances came from the entering of surfactants into the interlayer of MMTs. Excess surfactants were extracted with a Soxhlet apparatus, which showed two kinds of intercalation states of surfactants in the interlayer when the surfactant loading level was beyond the CEC. Fourier transform infrared spectroscopy and differential scanning calorimetry were used to explore the microstructures of OMSs. It was found that the surfactants arranged more orderly as the loading level increased and the excess surfactants piled up in the interlayer together with counterions, forming a sandwiched surfactant layer. On the basis of the results, the layer structures of OMSs and the mechanism by which the surfactants entered the interlayer were expounded: surfactant cations entered the interlayer through cation exchange reactions and were tightly attracted to the silicate platelet surfaces when the surfactant loading level was below the CEC;
Resumo:
Ionic liquids, ILs, carrying long-chain alkyl groups are surface active, SAIIs. We investigated the micellar properties of the SAIL 1-hexadecyl-3-methylimidazolium chloride, C(16)MeImCl, and compared the data with 1-hexadecylpyridinium chloride, C(16)PYCl, and benzyl (3-hexadecanoylaminoethyl)dimethylammonium chloride, C(15)AEtBzMe(2)Cl. The properties compared include critical micelle concentration, cmc; thermodynamic parameters of micellization; empirical polarity and water concentrations in the interfacial regions. In the temperature range from 15 to 75 degrees C, the order of cmc in H(2)O and in D(2)O is C(16)PYCl > C(16)MeImCl > C(15)AEtBzMe(2)Cl. The enthalpies of micellization, Delta H(mic)(degrees), were calculated indirectly from by use of the van`t Hoff treatment; directly by isothermal titration calorimetry, ITC. Calculation of the degree of counter-ion dissociation, alpha(mic), from conductivity measurements, by use of Evans equation requires knowledge of the aggregation numbers, N(agg), at different temperatures. We have introduced a reliable method for carrying out this calculation, based on the volume and length of the monomer, and the dependence of N(agg) on temperature. The N(agg) calculated for C(16)PyCl and C(16)MeImCl were corroborated by light scattering measurements. Conductivity- and ITC-based Delta H(mic)(degrees) do not agree; reasons for this discrepancy are discussed. Micelle formation is entropy driven: at all studied temperatures for C(16)MeImCl; only up to 65 degrees C for C(16)PyCl; and up to 55 degrees C for C(15)AEtBzMe(2)Cl. All these data can be rationalized by considering hydrogen-bonding between the head-ions of the monomers in the micellar aggregate. The empirical polarities and concentrations of interfacial water were found to be independent of the nature of the head-group. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The interaction between cationic surfactants and isopropylacrylamide-acrylic acid-ethyl methacrylate (IPA:AA:EMA) terpolymers has been investigated using steady-state fluorescence and spectrophotometric measurements to assess the effect of the polymer composition on the aggregation process and terpolymers' thermosensitivities. Micropolarity studies using pyrene show that the interaction of cationic surfactants with IPA:AA:EMA terpolymers occurs at surfactant concentrations much smaller than that observed for the pure surfactant in aqueous solution. The critical aggregation concentration (CAC) values decrease with both the hydrocarbon length of the surfactant and the content of ethyl methacrylate. These results were interpreted as a manifestation of the increasing contribution of attractive hydrophobic and electrostatic forces between negatively charged polymer chains and positively charged surfactant molecules. The increase of ethyl methacrylate in the copolymers lowers the CAC due to the larger hydrophobic character of the polymer backbone. The cloud point determination reveals that the lower critical solution temperatures (LCST) depend strongly on the copolymer composition and surfactant nature. The binding of surfactants molecules to the polymer chain screens the electrostatic repulsion between the carboxylic groups inducing a conformational transition and the dehydration of the polymer chain.
Resumo:
(Figure Presented) Mixed micelles of cetyltrimethylammonium bromide (CTABr) or dodecyltrimethylammonium bromide (DTABr) and the α-nucleophile, lauryl hydroxamic acid (LHA) accelerate dephosphorylation of bis(2,4-dinitrophenyl) phosphate (BDNPP) over the pH range 4-10. With a 0.1 mole fraction of LHA in DTABr or CTABr, dephosphorylation of BDNPP is approximately 10 4-fold faster than its spontaneous hydrolysis, and monoanionic LHA - is the reactive species. The results are consistent with a mechanism involving concurrent nucleophilic attack by hydroxamate ion (i) on the aromatic carbon, giving an intermediate that decomposes to undecylamine and 2,4-dinitrophenol, and (ii) at phosphorus, giving an unstable intermediate that undergoes a Lossen rearrangement yielding a series of derivatives including N,N-dialkylurea, undecylamine, undecyl isocyanate, and carbamyl hydroxamate. © 2009 American Chemical Society.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Three long chain cationic surfactants were intercalated into Ca-montmorillonite through ion exchangeand the obtained organoclays were characterized by X-ray diffraction (XRD), high resolution thermo-gravimetric analysis (TG) and Raman spectroscopy. The intercalation of surfactants not only changes thesurface properties of clay from hydrophilic to hydrophobic but also greatly increases the basal spacing ofthe interlayers based on XRD analysis. The thermal stability of organoclays intercalated with three sur-factants (TTAB, DTAB and CTAB) and the different arrangements of the surfactant molecules intercalatedinto Ca-montmorillonite were determined by TG-DTG analysis. A Raman spectroscopic study on the Ca-montmorillonite modified by three surfactants prepared at different concentrations provided the detailedconformational ordering of different intercalated long-chain surfactants under different conditions. Thewavenumber of the antisymmetric stretching mode is more sensitive than that of the symmetric stretch-ing mode to the mobility of the tail of the amine chain. At room temperature, the conformational orderingis more easily affected by the packing density in the lateral model. With the increase of the temperature,the positions of both the antisymmetric and symmetric stretching bands shift to higher wavenumbers,which indicates a decrease of conformational ordering. This study offers new insights into the struc-ture and properties of Ca-montmorillonite modified with different long chain surfactants. Moreover, theexperimental results confirm the potential applications of organic Ca-montmorillonites for the removalof organic impurities from aqueous media.
Resumo:
In recent years, organoclays have become widely used in many industrial applications, and particularly they have been applied as adsorbents for water purification (de Paiva et al., 2008; Zhou et al., 2008; Park et al., 2011). When the organoclays are enhanced by intercalation of cationic surfactant molecules, the surface properties are altered from hydrophilic to highly hydrophobic. These changes facilitate their industrial applications which are strongly dependent on the structural properties of organoclays (Koh and Dixon, 2001; Zeng et al., 2004; Cui et al., 2007). Thus a better understanding of the configuration and structural change in the organoclays by thermogravimetric analysis (TG) is essential. It has been proven that the TG is very useful for the study of complex minerals, modified minerals, and nanomaterials (Laachachi et al., 2005; Palmer et al., 2011; Park et al., in press, 2011). Therefore, the current investigation involves the thermal stability of a montmorillonite intercalated with two types of cationic surfactants: dodecyltrimethylammonium bromide (DDTMA) and didodecyldimethylammonium bromide (DDDMA) using TG. The modification of montmorillonite results in an increase in the interlayer or basal spacing and enhances the environmental and industrial application of the obtained organoclay.
Resumo:
In this study, organoclays were prepared through ion exchange of a single cationic surfactant, hexadecyltrimethylammonium bromide and characterised by a range of methods including X-ray diffraction (XRD) and thermogravimetric analysis. Changes in the surface properties of montmorillonite and the organoclays were observed and the basal spacings of organoclays with and without p-nitrophenol were determined using XRD. The thermal stability of both organoclays were measured using thermogravimetry. As the surfactant loading increased, the expanded basal spacings were observed, and different molecular configurations of surfactant were identified. When the surfactant loading exceeded 1.0 CEC, surfactant molecules tend to adsorb strongly on the clay surface and this resulted in increased affinity to organic compounds. The adsorbed p-nitrophenol and the surfactant decomposed simultaneously. Hence, the surfactant molecules and adsorbed p-nitrophenol are important in determining the thermal stabilities of organoclays. This study enhances the understanding of the structure and adsorption properties of organoclays and has further implications for the application of organoclays as filter materials for the removal of organic pollutants in aqueous solutions.