8 resultados para Monotremata
Resumo:
At head of title: Junta para Ampliación de Estudios é Investigaciones Científicas./ Museo Nacional de Ciencias Naturales.
Resumo:
The semiaquatic platypus and terrestrial echidnas (spiny anteaters) are the only living egg-laying mammals (monotremes). The fossil record has provided few clues as to their origins and the evolution of their ecological specializations; however, recent reassignment of the Early Cretaceous Teinolophos and Steropodon to the platypus lineage implies that platypuses and echidnas diverged >112.5 million years ago, reinforcing the notion of monotremes as living fossils. This placement is based primarily on characters related to a single feature, the enlarged mandibular canal, which supplies blood vessels and dense electrosensory receptors to the platypus bill. Our reevaluation of the morphological data instead groups platypus and echidnas to the exclusion of Teinolophos and Steropodon and suggests that an enlarged mandibular canal is ancestral for monotremes (partly reversed in echidnas, in association with general mandibular reduction). A multigene evaluation of the echidna–platypus divergence using both a relaxed molecular clock and direct fossil calibrations reveals a recent split of 19–48 million years ago. Platypus-like monotremes (Monotrematum) predate this divergence, indicating that echidnas had aquatically foraging ancestors that reinvaded terrestrial ecosystems. This ecological shift and the associated radiation of echidnas represent a recent expansion of niche space despite potential competition from marsupials. Monotremes might have survived the invasion of marsupials into Australasia by exploiting ecological niches in which marsupials are restricted by their reproductive mode. Morphology, ecology, and molecular biology together indicate that Teinolophos and Steropodon are basal monotremes rather than platypus relatives, and that living monotremes are a relatively recent radiation.
Resumo:
With the introduction of relaxed-clock molecular dating methods, the role of fossil calibration has expanded from providing a timescale, to also informing the models for molecular rate variation across the phylogeny. Here I suggest fossil calibration bounds for four mammal clades, Monotremata (platypus and echidnas), Macropodoidea (kangaroos and potoroos), Caviomorpha-Phiomorpha (South American and African hystricognath rodents), and Chiroptera (bats). In each case I consider sources of uncertainty in the fossil record and provide a molecular dating analysis to examine how the suggested calibration priors are further informed by other mammal fossil calibrations and molecular data.
Resumo:
Editor: D. W. Thompson.
Resumo:
Issued in VI fasciculi, each of which has special t.-p.
Resumo:
We report for the first time an unusual ejaculatory mechanism in the short-beaked echidna in which each side of the bilaterally symmetrical, rosettelike glans penis is used alternately, with the other being shut down. This is unparalleled in mammals but is reminiscent of the use of hemipenes in squamate reptiles, providing further reproductive evidence of a sauropsidian lineage in the Monotremata. Further, we describe the occurrence of motile sperm bundles in ejaculated echidna semen and provide scanning electron micrographs of their morphology. Sperm bundling appears to confer increased sperm motility, which may provide the potential for sperm competition between males.
Resumo:
Since publication of the first edition, huge developments have taken place in sensory biology research and new insights have been provided in particular by molecular biology. These show the similarities in the molecular architecture and in the physiology of sensory cells across species and across sensory modality and often indicate a common ancestry dating back over half a billion years. Biology of Sensory Systems has thus been completely revised and takes a molecular, evolutionary and comparative approach, providing an overview of sensory systems in vertebrates, invertebrates and prokaryotes, with a strong focus on human senses. Written by a renowned author with extensive teaching experience, the book covers, in six parts, the general features of sensory systems, the mechanosenses, the chemosenses, the senses which detect electromagnetic radiation, other sensory systems including pain, thermosensitivity and some of the minority senses and, finally, provides an outline and discussion of philosophical implications. New in this edition: - Greater emphasis on molecular biology and intracellular mechanisms - New chapter on genomics and sensory systems - Sections on TRP channels, synaptic transmission, evolution of nervous systems, arachnid mechanosensitive sensilla and photoreceptors, electroreception in the Monotremata, language and the FOXP2 gene, mirror neurons and the molecular biology of pain - Updated passages on human olfaction and gustation. Over four hundred illustrations, boxes containing supplementary material and self-assessment questions and a full bibliography at the end of each part make Biology of Sensory Systems essential reading for undergraduate students of biology, zoology, animal physiology, neuroscience, anatomy and physiological psychology. The book is also suitable for postgraduate students in more specialised courses such as vision sciences, optometry, neurophysiology, neuropathology, developmental biology.