959 resultados para Monoolein gel


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mineral trioxide aggregate (MTA) is a powder aggregate containing mineral oxides with a good biological action and may facilitate the regeneration of the periodontal ligament and formation of bone. Calcium hydroxide demonstrates antibacterial properties, enhances tissue dissolution, and induces bone formation. The objective of this study was to evaluate the MTA in the bone healing process and verify if the calcium hydroxide P.A. can improve and accelerate this process. It was used forty rnale Wistar rats, which were divided into two groups, considering or not the use of calcium hydroxide P.A. solution before treatment. Thus, each one of these groups was divided in four groups with five animals each, according to the treatment and the defect filled by: animal's coagulum, monoolein gel, MTA in aqueous solution, and MTA combined with monoolein gel. After 10 days, the animals were perfused and the right hemimandibles removed for histological analysis. Statistical analysis of the data showed significant difference between all analyzed groups when it was made comparisons using or not calcium hydroxide P.A. (p < 0.0001). There was found statistical difference between the groups that was inserted or not MTA, independently the calcium hydroxide application (p < 0.05). Results showed that the MTA used was able to induce bone regeneration and had its action optimized when combined to calcium hydroxide P.A. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to present a possible carrier for MTA, monoolein gel, with the objective to maintain this material in the place that was inserted and verify if this procedure is able to optimize its action. The data were evaluated by histomorphometric method and submitted to statistical analysis. The histological responses observed in this study indicate that the MTA is a reliable material and should be considered effective in bone periapical defects and the monoolein gel was capable to maintain the MTA in situ.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

doi: 10.1111/j.1741-2358.2011.00526.x Biological evaluation of the bone healing process after application of two potentially osteogenic proteins: an animal experimental model Objective: The aim of this work was to analyse qualitatively and quantitatively the newly formed bone after insertion of rhBMP-2 and protein extracted from Hevea brasiliensis (P-1), associated or not with a carrier in critical bone defects created in Wistar rat calvarial bone, using histological and histomorphometrical analyses. Materials and methods: Eighty-four male Wistar rats were used, divided into two groups, according to the period of time until the sacrifice (2 and 6 weeks). Each one of these groups was subdivided into six groups with seven animals each, according to the treatments: (1) 5 mu g of pure rhBMP-2, (2) 5 mu g of rhBMP-2/monoolein gel, (3) pure monoolein gel, (4) 5 mu g of pure P-1, (5) 5 mu g of P-1/monoolein gel and (6) critical bone defect controls. The animals were euthanised and the calvarial bone tissue removed for histological and histomorphometrical analyses. Result and conclusion: The results showed an improvement in the bone healing process using the rhBMP-2 protein, associated or not with a material carrier in relation to the other groups, and this process demonstrated to be time dependent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The aim of this work was to study the new bone tissue formation after bone morphogenetic protein type 2 (rhBMP-2) and P-1 application, using 5 and 10 mu g of each, combined to a material carrier, in critical bone defects. Methods: It was used 70 Wistar rats (male, similar to 250 g) that were divided in 10 groups with seven animals on each. Groups are the following: critical bone defect only, pure monoolein gel, 5 mu g of pure P-1, 5 mu g of pure rhBMP-2, 5 mu g of P-1/monoolein gel, 5 mu g of rhBMP-2/monoolein gel, 10 mu g of pure P-1, 10 mu g of pure rhBMP-2, 10 mu g of P-1/monoolein gel, 10 mu g of rhBMP-2/monoolein gel. Animals were sacrificed after 4 weeks of the surgical procedure and the bone samples were submitted to histological, histomorphometrical, and immunohistochemical evaluations. Results: Animals treated with pure P-1 protein, in both situations with 5 mu g and 10 mu g, had no significant difference (P > 0.05) for new bone formation; other groups treated with 10 mu g were statistically significant (P < 0.05) among themselves and when compared with groups in which it was inserted the monoolein gel or critical bone defect only (P < 0.05). In the group involving the 10 mu g rhBMP-2/monoolein gel association, it was observed an extensive bone formation, even when compared with the same treatment without the gel carrier. Conclusion: Using this experimental animal model, more new bone tissue was found when it was inserted the rhBMP-2, especially when this protein was combined to the vehicle, and this process seems to be dose dependent. Microsc. Res. Tech., 2011.(c) 2011 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low-level laser irradiation (LLLI) and recombinant human bone morphogenetic protein type 2 (rhBMP-2) have been used to stimulate bone formation. LLLI stimulates proliferation of osteoblast precursor cells and cell differentiation and rhBMP-2 recruits osteoprogenitor cells to the bone healing area. This in vivo study evaluated the effects of LLLI and rhBMP-2 on the bone healing process in rats. Critical bone defects were created in the parietal bone in 42 animals, and the animals were divided into six treatment groups: (1) laser, (2) 7 mu g of rhBMP-2, (3) laser and 7 mu g of rhBMP-2, (4) 7 mu g of rhBMP-2/monoolein gel, (5) laser and 7 mu g rhBMP-2/monoolein gel, and (6) critical bone defect controls. A gallium-aluminum-arsenide diode laser was used (wavelength 780 nm, output power 60 mW, beam area 0.04 cm(2), irradiation time 80 s, energy density 120 J/cm(2), irradiance 1.5 W/cm(2)). After 15 days, the calvarial tissues were removed for histomorphometric analysis. Group 3 defects showed higher amounts of newly formed bone (37.89%) than the defects of all the other groups (P < 0.05). The amounts of new bone in defects of groups 1 and 4 were not significantly different from each other (24.00% and 24.75%, respectively), but were significantly different from the amounts in the other groups (P < 0.05). The amounts of new bone in the defects of groups 2 and 5 were not significantly different from each other (31.42% and 31.96%, respectively), but were significantly different from the amounts in the other groups (P < 0.05). Group 6 defects had 14.10% new bone formation, and this was significantly different from the amounts in the other groups (P < 0.05). It can be concluded that LLLI administered during surgery effectively accelerated healing of critical bone defects filled with pure rhBMP-2, achieving a better result than LLLI alone or the use of rhBMP-2 alone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study analyzed the newly formed bone tissue after application of recombinant human BMP-2 (rhBMP-2) and P-1 (extracted from Hevea brasiliensis) proteins, 2 weeks after the creation of a critical bone defect in male Wistar rats treated or not with a low-intensity laser (GaAlAs 780 nm, 60 mW of power, and energy density dose of 30 J/cm2). The animals were divided into two major groups: (1) bone defect plus low-intensity laser treatment and (2) bone defect without laser irradiation. The following subgroups were also analyzed: (a) 5 mu g of pure rhBMP-2; (b) 5 mu g of pure P-1 fraction; (c) 5 mu g of rhBMP-2/monoolein gel; (d) 5 mu g of P-1 fraction/monoolein gel; (e) pure monoolein gel. Comparisons of the groups receiving laser treatment with those that did not receive laser irradiation show differences in the areas of new bone tissue. The group treated with 5 mu g of rhBMP-2 and laser irradiation was not significantly different (P >0.05) than the nonirradiated group that received the same treatment. The irradiated, rhBMP-2/monoolein gel treatment group showed a lower area of bone formation than the nonirradiated, rhBMP-2/gel monoolein treatment group (P < 0.001). The area of new bone tissue in the other nonirradiated and irradiated groups was not significantly different (P > 0.05). Furthermore, the group that received the 5 mu g of rhBMP-2 application showed the greatest bone formation. We conclude that the laser treatment did not interfere with the area of new bone tissue growth and that the greatest stimulus for bone formation involved application of the rhBMP-2 protein. Microsc. Res. Tech. 2011. (c) 2011 Wiley Periodicals, Inc.