979 resultados para Monolithic HPLC


Relevância:

70.00% 70.00%

Publicador:

Resumo:

High-performance liquid chromatography (HPLC) with tris(2,2-bipyridyl)ruthenium(II) chemiluminescence detection methodology is reported for the determination of the atypical antipsychotic drug quetiapine and the observation of its major active and inactive metabolites in human urine and serum. The method uses a monolithic chromatographic column allowing high flow rates of 3mL min−1 enabling rapid quantification. Flow injection analysis (FIA) with tris(2,2-bipyridyl)ruthenium(II) chemiluminescence detection and HPLC time of flight mass spectrometry (TOF-MS) were used for the determination of quetiapine in a pharmaceutical preparation to establish its suitability as a calibration standard. The limit of detection achieved with FIA was 2×10−11 mol L−1 in simple aqueous solution. The limits of detection achieved with HPLC were 7×10−8 and 2×10−10 mol L−1 in urine and serum, respectively. The calibration range for FIA was between 5×10−9 and 1×10−6 mol L−1. The calibration ranges for HPLC were between 1×10−7–1×10−4 and 1×10−8–1×10−4 mol L−1 in urine and serum, respectively. The quetiapine concentrations in patient samples were found to be 3×10−6 mol L−1 in urine and 7×10−7 mol L−1 in serum. Without the need for preconcentration, the HPLC detection limits compared favourably with those in previously published methodologies. The metabolites were identified using HPLC-TOF-MS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Performance of comprehensive two-dimensional liquid chromatography system is greatly improved than we reported previously by using a silica monolithic column as for the second dimensional separation. Due to the increase of the elution speed on the second dimensional monolithic column, the first dimensional column efficiency and analysis rate can be greatly improved as comparing with conventionally second dimensional column. The developed system was applied to analysis of methanol extraction of two umbelliferae herbs Ligusticum chuanxiong Hort. and Angelica sinensis (Oliv.) Diels by using CN column as for the first dimensional separation and a silica monolithic ODS column for the second dimensional separation, and the obtained three-dimensional chromatograms were treated by normalization of peak heights with the value of the highest peak or setting a certain value using a software written in-house. It was observed that much more peaks for low-abundant components in TCM extract can clearly be detected here than we reported before, due to the large difference for the amount of components in TCMs' extract. With the above improvements in separation performance and data treatment, totally about 120 components in methanol extraction of Rhizoma chuanxiong and 100 in A. sinensis were separated with UV detection within 130 min. This result meant that both the number of peaks detected increase twice but the analysis time decease twice if comparing with the previously reported result. (c) 2005 Published by Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have combined the generation of solvent gradients using milliGAT pumps, chromatographic separations with monolithic columns and chemiluminescence detection in an instrument manifold that approaches the automation and separation efficiency of HPLC, whilst maintaining the positive attributes of flow injection analysis (FIA), such as manifold versatility, speed of analysis and portability. As preliminary demonstrations of this hybrid FIA/HPLC system, we have determined six opiate alkaloids (morphine, pseudomorphine, codeine, oripavine, ethylmorphine and thebaine) and four biogenic amines (vanilmandelic acid, serotonin, 5-hydroxyindole-3-acetic acid and homovanillic acid) in human urine, using tris(2,2′-bipyridyl)ruthenium(III) and acidic potassium permanganate chemiluminescence detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long methacrylate monolithic columns (100 cm x 320 mum i.d.) were prepared from silanized fused-silica capillaries of 320 mum i.d. by in situ copolymerization of butyl methacrylate (BMA) with ethylene dimethacrylate (EDMA) in the presence of a suitable porogen. The separation performance and selectivity of the column were evaluated and compared with a 25 cm x 320 mum i.d. column prepared in the same way by capillary high-performance liquid chromatography (mu-HPLC) The results showed that the 1 m long monolithic column can generate 33 x 10(3) plate number and exhibited good permeability, higher sample loadability, and separation capability. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A monolithic enzymatic microreactor was prepared in a fused-silica capillary by in situ polymerization of acrylamide, glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA) in the presence of a binary porogenic mixture of dodecanol and cyclohexanol, followed by ammonia solution treatment, glutaraldehyde activation and trypsin modification. The choice of acrylamide as co-monomer was found useful to improve the efficiency of trypsin modification, thus, to increase the enzyme activity. The optimized microreactor offered very low back pressure, enabling the fast digestion of proteins flowing through the reactor. The performance of the monolithic microreactor was demonstrated with the digestion of cytochrome c at high flow rate. The digests were then characterized by CE and HPLC-MS/MS with the sequence coverage of 57.7%. The digestion efficiency was found over 230 times as high as that of the conventional method. in addition, for the first time, protein digestion carried out in a mixture of water and ACN was compared with the conventional aqueous reaction using MS/MS detection, and the former solution was found more compatible and more efficient for protein digestion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the development and application of an RP HPLC method using a C(18) monolithic stationary phase for the separation and quantification of extra- and intracellular amino acids in a batch cultivation of the marine alga Tetraselmis gracilis. Fluorimetric detection was made after separation of the o-phthaldialdehyde 2-mercaptoethanol (OPA-2MCE) derivatives using a binary gradient elution. Separation of 19 amino acids was achieved with resolution >1.5 in about 39 min at a flow rate of 1.5 mL/min. RSD of analyses in seawater medium ranged from 0.36% for Orn (0.50 mu mol/L) to 12% for Ile (0.10 mu mol/L). The main constituents of the intracellular dissolved free amino acids (DFAAs) in the exponential growth phase were arginine (Arg), asparagine (Asn), alanine (Ala), aspartic acid (Asp), glutamic acid (Glu), serine (Ser), glycine (Gly), glutamine (Gln), and leucine (Leu). The major amino acids excreted to the media were valine (Val), Ala, Ser, and Gly. The monolithic phase facilitates the analysis by shortening the separation time and saving solvents and instrumentation costs (indeed conventional HPLC instrumentation can be used, running at lower pressures than those ones used with packed particle columns).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-Performance Liquid Chromatography (HPLC) conditions are described for separation of 2,4-dinitrophenylhydrazone (2,4-DNPH) derivatives of carbonyl compounds in a 10 cm long C-18 reversed phase monolithic column. Using a linear gradient from 40 to 77% acetonitrile (acetonitrile-water system), the separation was achieved in about 10 min-a time significantly shorter than that obtained with a packed particles column. The method was applied for determination of formaldehyde and acetaldehyde in Brazilian sugar cane spirits. The linear dynamic range was between 30 and 600 mu g L-1, and the detection limits were 8 and 4 mu g L-1 for formaldehyde and acetaldehyde, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selective determination of morphine in the larvae of Calliphora stygia (Fabricius) (Diptera: Calliphoridae) using acidic potassium permanganate chemiluminescence detection coupled with flow injection analysis and high-performance liquid chromatography (HPLC) is described. Larvae of C. stygia were reared on minced meat substrates that had been spiked with varying concentrations of morphine. Morphine concentrations were chosen to reflect typical levels in human tissues from opiate overdose victims. After maturing on substrates, larvae were analyzed for the presence of morphine using chemiluminescence detection coupled to flow injection analysis and a rapid HPLC method. Analysis of the larval matrix by flow injection analysis with chemiluminescence detection indicated the presence of interferants capable of generating chemiluminescence. A rapid chromatographic separation with a monolithic column allowed selective determination of morphine in larvae using postcolumn chemiluminescence detection. Larvae of C. stygia reared on substrates containing morphine at concentrations of 500 and 1000 ng/g did not sequester morphine at detectable concentrations. Larvae reared on substrates containing morphine concentrations of 2500, 5000, and 10,000 ng/g tested positive for the drug at concentrations of 765, 2720, and 3010 ng/g, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have combined high-performance liquid chromatography (HPLC) separations using a monolithic column with acidic potassium permanganate and tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence detection in a rapid and highly sensitive method to monitor the process of extracting opiate alkaloids from Papaver somniferum. Due to the high flow rates allowed with the monolithic column and the inherent selectivity of the chemiluminescence reactions, the four predominant alkaloids – morphine, codeine, oripavine and thebaine – were determined in less than 2 min. The results obtained with numerous process samples compared favourable with those of the standard HPLC methodology. Limits of detection were 1 × 10−10 M, 5 × 10−10 M, 5 × 10−10 M and 1 × 10−9 M, for morphine, codeine, oripavine and thebaine, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a non-destructive "peak parking" protocol in order to assess the axial heterogeneity of an in situ modified monolithic column for high performance liquid chromatography; a "gradient stationary phase" was designed whereby the ligand density decreases along the length of the rod in the "forward flow" configuration. The results of multi-location peak parking demonstrated a consistent increase in peak variance from the 1 cm position of the column to the 9 cm location. This increase in band broadening supported the theory of a decreasing ligand density along the length of this gradient column. This is consistent with efficiency measurements performed in both the forward and reverse flow directions, with an improved efficiency (15% increase in N m-1) in the reverse direction. These results are consistent with theoretical investigations into stationary phase gradients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydroethanolic extracts of C. langsdorffii leaves have therapeutic potential. This work reports a validated chromatographic method for the quantification of polar compounds in the hydroethanolic extract of C. langsdorffii leaves. A reliable HPLC method was developed using two monolithic columns linked in series (100 x 4.6 mm - C-18), with nonlinear gradient elution, and UV detection set at 257 nm. A procedure for the extraction of flavonols was also developed, which involved the use of 70% aqueous ethanol and the addition of benzophenone as the internal standard. The developed method led to a good detection response as the values for linearity were between 10.3 and 1000 mu g/mL, and those for recovery between 84.2 and 111.1%. The detection limit ranged from 0.02 to 1.70 mu g/mL and the quantitation limit from 0.07 to 5.1 mu g/mL, with a maximum RSD of 5.24%. Five compounds, rutin, quercetin-3-O-alpha-L-rhamnopyranoside, kaempferol-3-O-alpha-L-rhamnopyranoside, quercetin and kaempferol, were quantified. This method could, therefore, be used for the quality control of hydroethanolic extracts of Copaifera leaves and their cosmetic and pharmaceutical products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five different methods were critically examined to characterize the pore structure of the silica monoliths. The mesopore characterization was performed using: a) the classical BJH method of nitrogen sorption data, which showed overestimated values in the mesopore distribution and was improved by using the NLDFT method, b) the ISEC method implementing the PPM and PNM models, which were especially developed for monolithic silicas, that contrary to the particulate supports, demonstrate the two inflection points in the ISEC curve, enabling the calculation of pore connectivity, a measure for the mass transfer kinetics in the mesopore network, c) the mercury porosimetry using a new recommended mercury contact angle values. rnThe results of the characterization of mesopores of monolithic silica columns by the three methods indicated that all methods were useful with respect to the pore size distribution by volume, but only the ISEC method with implemented PPM and PNM models gave the average pore size and distribution based on the number average and the pore connectivity values.rnThe characterization of the flow-through pore was performed by two different methods: a) the mercury porosimetry, which was used not only for average flow-through pore value estimation, but also the assessment of entrapment. It was found that the mass transfer from the flow-through pores to mesopores was not hindered in case of small sized flow-through pores with a narrow distribution, b) the liquid penetration where the average flow-through pore values were obtained via existing equations and improved by the additional methods developed according to Hagen-Poiseuille rules. The result was that not the flow-through pore size influences the column bock pressure, but the surface area to volume ratio of silica skeleton is most decisive. Thus the monolith with lowest ratio values will be the most permeable. rnThe flow-through pore characterization results obtained by mercury porosimetry and liquid permeability were compared with the ones from imaging and image analysis. All named methods enable a reliable characterization of the flow-through pore diameters for the monolithic silica columns, but special care should be taken about the chosen theoretical model.rnThe measured pore characterization parameters were then linked with the mass transfer properties of monolithic silica columns. As indicated by the ISEC results, no restrictions in mass transfer resistance were noticed in mesopores due to their high connectivity. The mercury porosimetry results also gave evidence that no restrictions occur for mass transfer from flow-through pores to mesopores in the small scaled silica monoliths with narrow distribution. rnThe prediction of the optimum regimes of the pore structural parameters for the given target parameters in HPLC separations was performed. It was found that a low mass transfer resistance in the mesopore volume is achieved when the nominal diameter of the number average size distribution of the mesopores is appr. an order of magnitude larger that the molecular radius of the analyte. The effective diffusion coefficient of an analyte molecule in the mesopore volume is strongly dependent on the value of the nominal pore diameter of the number averaged pore size distribution. The mesopore size has to be adapted to the molecular size of the analyte, in particular for peptides and proteins. rnThe study on flow-through pores of silica monoliths demonstrated that the surface to volume of the skeletons ratio and external porosity are decisive for the column efficiency. The latter is independent from the flow-through pore diameter. The flow-through pore characteristics by direct and indirect approaches were assessed and theoretical column efficiency curves were derived. The study showed that next to the surface to volume ratio, the total porosity and its distribution of the flow-through pores and mesopores have a substantial effect on the column plate number, especially as the extent of adsorption increases. The column efficiency is increasing with decreasing flow through pore diameter, decreasing with external porosity, and increasing with total porosity. Though this tendency has a limit due to heterogeneity of the studied monolithic samples. We found that the maximum efficiency of the studied monolithic research columns could be reached at a skeleton diameter of ~ 0.5 µm. Furthermore when the intention is to maximize the column efficiency, more homogeneous monoliths should be prepared.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundamental improvements to the experimental protocol of two-dimensional high performance liquid chromatography were developed to accomplish truly quantitative analyses of complex natural products. This included developing novel measurement techniques to elucidate the retention behaviour of monolithic columns. Approaches to streamline chromatographic method development were also explored.