172 resultados para Monolith


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microfluidic technologies have great potential to help create automated, cost-effective, portable devices for rapid point of care (POC) diagnostics in diverse patient settings. Unfortunately commercialization is currently constrained by the materials, reagents, and instrumentation required and detection element performance. While most microfluidic studies utilize planar detection elements, this dissertation demonstrates the utility of porous volumetric detection elements to improve detection sensitivity and reduce assay times. Impedemetric immunoassays were performed utilizing silver enhanced gold nanoparticle immunoconjugates (AuIgGs) and porous polymer monolith or silica bead bed detection elements within a thermoplastic microchannel. For a direct assay with 10 µm spaced electrodes the detection limit was 0.13 fM AuIgG with a 3 log dynamic range. The same assay was performed with electrode spacing of 15, 40, and 100 µm with no significant difference between configurations. For a sandwich assay the detection limit was10 ng/mL with a 4 log dynamic range. While most impedemetric assays rely on expensive high resolution electrodes to enhance planar senor performance, this study demonstrates the employment of porous volumetric detection elements to achieve similar performance using lower resolution electrodes and shorter incubation times. Optical immunoassays were performed using porous volumetric capture elements perfused with refractive index matching solutions to limit light scattering and enhance signal. First, fluorescence signal enhancement was demonstrated with a porous polymer monolith within a silica capillary. Next, transmission enhancement of a direct assay was demonstrated by infusing aqueous sucrose solutions through silica bead beds with captured silver enhanced AuIgGs yielding a detection limit of 0.1 ng/mL and a 5 log dynamic range. Finally, ex situ functionalized porous silica monolith segments were integrated into thermoplastic channels for a reflectance based sandwich assay yielding a detection limit of 1 ng/mL and a 5 log dynamic range. The simple techniques for optical signal enhancement and ex situ element integration enable development of sensitive, multiplexed microfluidic sensors. Collectively the demonstrated experiments validate the use of porous volumetric detection elements to enhance impedemetric and optical microfluidic assays. The techniques rely on commercial reagents, materials compatible with manufacturing, and measurement instrumentation adaptable to POC diagnostics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Black women cultural entrepreneurs are a group of entrepreneurs that merit further inquiry. Using qualitative interview and participant observation data, this dissertation investigates the ways in which black women cultural entrepreneurs define success. My findings reveal that black women cultural entrepreneurs are a particular interpretive community with values, perspectives and experiences, which are not wholly idiosyncratic, but shaped by collective experiences and larger social forces. Black women are not a monolith, but they are neither disconnected individuals completely devoid of group identity. The meaning they give to their businesses, professional experiences and understandings of success are influenced by their shared social position and identity as black women. For black women cultural entrepreneurs, the New Bottom Line goes beyond financial gain. This group, while not uniform in their understandings of success, largely understand the most meaningful accomplishments they can realize as social impact in the form of cultural intervention, black community uplift and professional/creative agency. These particular considerations represent a new paramount concern, and alternative understanding of what is typically understood as the bottom line. The structural, social and personal challenges that black women cultural entrepreneurs encounter have shaped their particular perspectives on success. I also explore the ways research participants articulated an oppositional consciousness to create an alternative means of defining and achieving success. I argue that this consciousness empowers them with resources, connections and meaning not readily conferred in traditional entrepreneurial settings. In this sense, the personal, social and structural challenges have been foundational to the formation of an alternative economy, which I refer to as The Connected Economy. Leading and participating in The Connected Economy, black women cultural entrepreneurs represent a black feminist and womanist critique of dominant understandings of success.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The combustion of chlorinated volatil organic compounds (VOCs) over the perovskites LaFeO3 and La0.9MnO3 catalysts were investigated by employing a monolithic reactor. The two catalysts were individuated from a preliminary screening to test the stability and the influence of nonstoichiometry; a dip coating technique for supporting powder catalyst; was developed and the prepared catalysts were tested in a monolithic reactor. It was studied the catalytic activity of different loadings of perovskite supported on the monolith and was compared the highest loadings with a commercial catalyst, the perovskites resulted efficient catalysts for combustion of aromatic and chlorinated VOCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon monoliths with high densities are studied as adsorbents for the storage of H2, CH4, and CO2 at ambient temperature and high pressures. The starting monolith A3 (produced by ATMI Co.) was activated under a CO2 flow at 1073 K, applying different activation times up to 48 h. Micropore volumes and apparent surface areas were deduced from N2 and CO2 adsorption isotherms at 77 K and 273 K, respectively. CO2 and CH4 isotherms were measured up to 3 MPa and H2 up to 20 MPa. The BET surface area of the starting monolith (941 m2/g) could be significantly increased up to 1586 m2/g, and the developed porosity is almost exclusively comprised of micropores <1 nm. Total storage amounts take into account the compressed gas in the void space of the material, in addition to the adsorbed gas. Remarkably, high total storage amounts are reached for CO2 (482 g/L), CH4 (123 g/L), and H2 (18 g/L). These values are much higher than for other sorbents with similar surface areas, due to the high density of the starting monolith and of the activated ones, for which the density decreases only slightly (from 1.0 g/cm3 to 0.8 g /cm3 upon CO2 activation). The findings reveal the suitability of high density activated carbon monoliths for gas storage application. Thus, the amounts of stored gas can be increased by more than a 70 % in the case of H2 at 20 MPa, almost 5.5 times in the case of CH4 at 3 MPa, and more than 7.5 times in the case of CO2 at 3 MPa when adsorbents are used for gas storage under the investigated conditions rather than simple compression. Furthermore, the obtained results have been recently confirmed by a scale-up study in which 2.64 kg of high density monolith adsorbent was filled a tank cylinder of 2.5 L (Carbon, 76, 2014, 123).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Hungarian Revolution is often analysed in a national context or from the angle of Hungarian-Soviet relations. From this perspective, the Eastern European satellites seem mere puppets and the Soviet bloc a monolith. Archival evidence nevertheless shows that the Kremlin actually attempted to build a new kind of international relations after Stalin’s death in 1953, in which the Eastern European leaders would gain more scope for manoeuvre. This attempt at liberalisation even facilitated the uprisings in Hungary in 1956. Avoiding a teleological approach to the Hungarian Revolution, this article argues that the Soviet invasion was neither inevitable, nor wholly unilateral. Khrushchev even sought to legitimise the invasion in bilateral and multilateral consultations. There was a mutual interest in sacrificing Hungary’s sovereignty to safeguard the communist monopoly on power. This multilateralisation of Soviet bloc security is an important explanatory factor in an analysis of the Revolution and its repercussions in Eastern Europe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Process systems design, operation and synthesis problems under uncertainty can readily be formulated as two-stage stochastic mixed-integer linear and nonlinear (nonconvex) programming (MILP and MINLP) problems. These problems, with a scenario based formulation, lead to large-scale MILPs/MINLPs that are well structured. The first part of the thesis proposes a new finitely convergent cross decomposition method (CD), where Benders decomposition (BD) and Dantzig-Wolfe decomposition (DWD) are combined in a unified framework to improve the solution of scenario based two-stage stochastic MILPs. This method alternates between DWD iterations and BD iterations, where DWD restricted master problems and BD primal problems yield a sequence of upper bounds, and BD relaxed master problems yield a sequence of lower bounds. A variant of CD, which includes multiple columns per iteration of DW restricted master problem and multiple cuts per iteration of BD relaxed master problem, called multicolumn-multicut CD is then developed to improve solution time. Finally, an extended cross decomposition method (ECD) for solving two-stage stochastic programs with risk constraints is proposed. In this approach, a CD approach at the first level and DWD at a second level is used to solve the original problem to optimality. ECD has a computational advantage over a bilevel decomposition strategy or solving the monolith problem using an MILP solver. The second part of the thesis develops a joint decomposition approach combining Lagrangian decomposition (LD) and generalized Benders decomposition (GBD), to efficiently solve stochastic mixed-integer nonlinear nonconvex programming problems to global optimality, without the need for explicit branch and bound search. In this approach, LD subproblems and GBD subproblems are systematically solved in a single framework. The relaxed master problem obtained from the reformulation of the original problem, is solved only when necessary. A convexification of the relaxed master problem and a domain reduction procedure are integrated into the decomposition framework to improve solution efficiency. Using case studies taken from renewable resource and fossil-fuel based application in process systems engineering, it can be seen that these novel decomposition approaches have significant benefit over classical decomposition methods and state-of-the-art MILP/MINLP global optimization solvers.