115 resultados para Monohydrate
Resumo:
X-ray powder diffraction was used to study the phase composition of human renal calculi. The stones were collected from 56 donors in Vitoria, Espirito Santo state, southeastern Brazil. An XRD phase quantification revealed that 61% of the studied renal stones were composed exclusively of calcium oxalate [34% formed only by calcium oxalate rnonohydrate (COM) and 27% presents both monohydrate and dihydratate calcium oxalate]. The 39% multi-composed calculi have various other phases such as uric acid and calcium phosphate. Rietveld refinement of XRD data of one apparent monophasic (COM) renal calculus revealed the presence of a small amount of hydroxyapatite. The presence of this second phase and the morphology of the stone (ellipsoidal) indicated that this calculus can be classified as non-papillary type and its nucleation process developed in closed kidney cavities. In order to show some advantages of the X-ray powder diffraction technique, a study of the phase transformation of monohydrate calcium oxalate into calcium carbonate (CaCO(3)) was carried out by annealing of a monophasic COM calculi at 200, 300, and 400 degrees C for 48 h in a N(2) gas atmosphere. The results of the XRD for the heat treated samples is ill good agreement with the thermogravimetric analysis found in the literature and shows that X-ray powder diffraction can be used as a suitable technique to study the composition and phase diagram of renal calculi. (C) 2008 International Centre for Diffraction Data.
Resumo:
The title compound, K(+)center dot C(8)H(13)BF(3)O(2)(-)center dot H(2)O, which was obtained from the reaction of a modified form of Z-vinylic telluride via a transmetalation reaction with n-BuLi, crystallizes as K(+) and C(8)H(13)BF(3)O(2)-ions along with a water molecule. The K(+) cation is surrounded by four anions, making close contacts with six F atoms at 2.659 (3)-2.906 (3) angstrom and with two O atoms at 2.806 (3) and 2.921 (3) angstrom in a distorted bicapped trigonal-prismatic geometry.
Resumo:
The asymmetric unit of the title compound, C(6)H(9)N(2)OS(2)(+)center dot-HSO(4)(-)center dot H(2)O, contains a heterocyclic cation, a hydrogen sulfate anion and a water molecule. There are strong hydrogen bonds between the hydrogen sulfate anions and water molecules, forming an infinite chain along the [010] direction, from which the cations are pendent. The steric, electronic and geometric features are compared with those of similar compounds. In this way, structural relationships are stated in terms of the influence of the sulfate group on the protonation of the heterocycle and on the tautomeric equilibrium in the solid state.
Resumo:
During a polymorphism screening of hydroxybenzophenone derivatives, a monohydrate pseudopolymorph of (3,4-dihydroxyphenyl)(phenyl)methanone, C(13)H(10)O(3)center dot H(2)O, (I), was obtained. Structural relationships and the role of water in crystal assembly were established on the basis of the known anhydrous form [Cox, Kechagias & Kelly (2008). Acta Cryst. B64, 206-216]. The crystal packing of (I) is stabilized by classical intermolecular O-H...O hydrogen bonds, generating a three-dimensional network.
Resumo:
In the title hydrate, C(16)H(15)BrO(2)SSe center dot H(2)O, the sulfinyl O atom lies on the opposite side of the molecule to the Se and carbonyl O atoms. The benzene rings form a dihedral angle of 51.66 (17)degrees and are splayed with respect to each other. The observed conformation allows the water molecules to bridge sulfinyl O atoms via O-H center dot center dot center dot O hydrogen bonds, generating a linear supramolecular chain along the b axis; the chain is further stabilized by C-H center dot center dot center dot O contacts. The chains are held in place in the crystal structure by C center dot center dot center dot H center dot center dot center dot pi and C-Br center dot center dot center dot pi interactions.
Resumo:
The asymmetric unit of the title compound, C(3)H(5)N(2)(+)center dot C(6)H(2)N(3)O(7)(-)center dot C(3)H(4)N(2)center dot H(2)O or H(C(3)H(4)N(2))(2)(+)center dot C(6)H(2)N(3)O(7)(-)center dot H(2)O, contains a diimidazolium cationic unit, one picrate anion and one molecule of water. In the crystal, the components are connected by N-H center dot center dot center dot O, N-H center dot center dot center dot N and O-H center dot center dot center dot O hydrogen bonds, forming a two-dimensional network parallel to (001). In addition, weak intermolecular C-H center dot center dot center dot O hydrogen bonds lead to the formation of a three-dimensional network featuring R(5)(5)(19) rings.
Resumo:
Sibutramine hydrochloride monohydrate, chemically 1-(4-chlorophenyl)-N,N-dimethyl-alpha-(2-methylpropyl) hydrochloride monohydrate (SB center dot HCl center dot H2O), was approved by the U.S. Food and Drug Administration for the treatment of obesity. The objective of this study was to develop, validate, and compare methods using UV-derivative spectrophotometry (UVDS) and reversed-phase high-performance liquid chromatography (HPLC) for the determination of SB center dot HCl center dot H2O in pharmaceutical drug products. The UVDS and HPLC methods were found to be rapid, precise, and accurate. Statistically, there was no significant difference between the proposed UVDS and HPLC methods. The enantiomeric separation of SB was obtained on an alpha-1 acid glycoprotein column. The R- and S-sibutramine were eluted in < 5 min with baseline separation of the chromatographic peaks (alpha = 1.9 and resolution = 1.9).
Resumo:
In the crystal structures of the respective title compounds, C12H10N4O, C13H11N3O . H2O and C11K9N3O2, variations in the torsion angles of the aromatic pyridyl and benzoyl groups are observed, and the disposition of the heterocyclic aldehyde is shown to be influenced by the ring size of this group.
Resumo:
OBJECTIVE: Monosodium urate monohydrate (MSU) crystal-induced interleukin-1β (IL-1β) secretion is a critical factor in the pathogenesis of gout. However, without costimulation by a proIL-1β-inducing factor, MSU crystals alone are insufficient to induce IL-1β secretion. The responsible costimulatory factors that act as a priming endogenous signal in vivo are not yet known. We undertook this study to analyze the costimulatory properties of myeloid-related protein 8 (MRP-8) and MRP-14 (endogenous Toll-like receptor 4 [TLR-4] agonists) in MSU crystal-induced IL-1β secretion and their relevance in gout. METHODS: MRP-8/MRP-14 was measured in paired serum and synovial fluid samples by enzyme-linked immunosorbent assay (ELISA) and localized in synovial tissue from gout patients by immunohistochemistry. Serum levels were correlated with disease activity, and MSU crystal-induced release of MRPs from human phagocytes was measured. Costimulatory effects of MRP-8 and MRP-14 on MSU crystal-induced IL-1β secretion from phagocytes were analyzed in vitro by ELISA, Western blotting, and polymerase chain reaction. The impact of MRP was tested in vivo in a murine MSU crystal-induced peritonitis model. RESULTS: MRP-8/MRP-14 levels were elevated in the synovium, tophi, and serum of patients with gout and correlated with disease activity. MRP-8/MRP-14 was released by MSU crystal-activated phagocytes and increased MSU crystal-induced IL-1β secretion in a TLR-4-dependent manner. Targeted deletion of MRP-14 in mice led to a moderately reduced response of MSU crystal-induced inflammation in vivo. CONCLUSION: MRP-8 and MRP-14, which are highly expressed in gout, are enhancers of MSU crystal-induced IL-1β secretion in vitro and in vivo. These endogenous TLR-4 ligands released by activated phagocytes contribute to the maintenance of inflammation in gout.
Resumo:
The crystal structure of Cu(PM)2(N03hoH20 (where PM is pyridoxamine, CSHI2N202) has been determined from three dimensional x-ray diffraction data. The crystals are triclinic, space group pI, a = 14.248 (2), b = 8.568 (1), c = 9.319 (1) 1, a = 94.08 (1), e = 89.73 (1), y~~ 99.18 (1)°, z = 2, jl(MoK) = 10.90 em-I, Po = 1.61 g/cm3 and Pc = 1.61 g/em3• The structure a was solved by Patterson techniques from data collected on a Picker 4-circle diffractometer to 26max = 45°. All atoms, including hydrogens, have been located. Anisotropic thermal parameters have been refined for all nonhydrogen atoms. For the 2390 independent reflections with F ? 3cr(F) , R = 0.0408. The results presented here provide the first detailed structural information of a metal complex with PM itself. The copper atoms are located on centres of symmetry and each is chela ted by two PM zwitterions through the amino groups and phenolate oxygen atoms. The zwitterionic form found in this structure involves the loss of a proton from the phenolate group and protonation of the pyridine ring nitrogen atoms. The two independent Cu(PM)2 moieties are symmetrically bridged by a single oxygen atom from one of the nitrate groups. The second nitrate group is not coordinated to the copper atoms but is central to an extensive hydrogen bonding network involving the water molecule and uncoordinated functional groups of PM.
Resumo:
Over the past years there has been considerable interest in the growth of single crystals both from the point of view of basic research and technological application. With the revolutionary emergence of solid state electronics which is based on single crystal technolo8Ys basic and applied studies on crystal growth and characterization _have gained a-more significant role in material science. These studies are being carried out for single crystals not only of semiconductor and other electronic materials but also of metals and insulators. Many organic crystals belonging to the orthorhombic class exhibit ferroelectric, electrooptic, triboluminescent and piezoelectric properties. Diammonium Hydrogen Citrate (DAHC) crystals are reported to be piezoelectric and triboluminescent /1/. Koptsik et al. /2/ have reported the piezoelectric nature of Citric Acid Monohydrate (CA) crystals. And since not much work has been done on these crystals, it has been thought useful to grow and characterize these crystals. This thesis presents a study of the growth of these crystals from solution and their defect structures. The results of the microindentation and thermal analysis are presented. Dielectric, fractographic, infrared (IR) and ultraviolet (UV) studies of DAHC crystals are also reported
Resumo:
We present argon predissociation vibrational spectra of the OH-.H2O and Cl-.H2O complexes in the 1000-1900 cm(-1) energy range, far below the OH stretching region reported in previous studies. This extension allows us to explore the fundamental transitions of the intramolecular bending vibrations associated with the water molecule, as well as that of the shared proton inferred from previous assignments of overtones in the higher energy region. Although the water bending fundamental in the Cl-.H2O spectrum is in very good agreement with expectations, the OH-.H2O spectrum is quite different than anticipated, being dominated by a strong feature at 1090 cm(-1). New full-diniensionality calculations of the OH-.H2O vibrational level structure using diffusion Monte Carlo and the VSCF/CI methods indicate this band arises from excitation of the shared proton.
Resumo:
Reaction of iodoacetic acid with cupric carbonate in water in dimmed light yields green Cu(ICH2COO)(2 center dot)H2O (1). From X-ray crystallography, it is found to be a tetra-acetato bridged copper(II) dimer with the water molecules occupying the apical positions. In thermogravimetry, the coordinated water molecules are lost in the temperature range 50-100 degrees C. From magnetic susceptibility measurements in the temperature range 300-1.8 K, the exchange coupling constant J is found to be -142(1) cm(-1) and g = 2.18(2) with the spin Hamiltonian H = -2J{S-Cu1 center dot S-Cu2}. It reacts with 2,2'-bipyridine (bpy) to yield [Cu(bpy)(2)I]I. It oxidises thiophenol to Ph-S-S-Ph under dry N-2 atmosphere.
Resumo:
The synthesis. crystal structure and thermal study of the blue catena-(L-glutamato)-aqua copper(II) monohydrate have been reported. The compound crystallizes in P2(1)2(1)2(1) space group and consists of a polymeric three-dimensional network of copper(II) which is coordinated with the amino nitrogen and the carboxylate oxygen Of L-glutamate, the side chain carboxylate oxygen of a neighbouring L-glutamate and the oxygen of a water molecule in the equatorial position. Weak coordination of two additional glutamate oxygen atoms to both the axial positions Completes a distorted octahedron. The crystal structure shows that the lattice water is stabilized by the formation of strong H-bonding network with the coordinated water molecule. Removal and reabsorption of the water molecule have been studied by thermal analysis.