401 resultados para Monocular SLAM
Resumo:
Thermal-infrared imagery is relatively robust to many of the failure conditions of visual and laser-based SLAM systems, such as fog, dust and smoke. The ability to use thermal-infrared video for localization is therefore highly appealing for many applications. However, operating in thermal-infrared is beyond the capacity of existing SLAM implementations. This paper presents the first known monocular SLAM system designed and tested for hand-held use in the thermal-infrared modality. The implementation includes a flexible feature detection layer able to achieve robust feature tracking in high-noise, low-texture thermal images. A novel approach for structure initialization is also presented. The system is robust to irregular motion and capable of handling the unique mechanical shutter interruptions common to thermal-infrared cameras. The evaluation demonstrates promising performance of the algorithm in several environments.
Resumo:
This paper presents a visual SLAM method for temporary satellite dropout navigation, here applied on fixed- wing aircraft. It is designed for flight altitudes beyond typical stereo ranges, but within the range of distance measurement sensors. The proposed visual SLAM method consists of a common localization step with monocular camera resectioning, and a mapping step which incorporates radar altimeter data for absolute scale estimation. With that, there will be no scale drift of the map and the estimated flight path. The method does not require simplifications like known landmarks and it is thus suitable for unknown and nearly arbitrary terrain. The method is tested with sensor datasets from a manned Cessna 172 aircraft. With 5% absolute scale error from radar measurements causing approximately 2-6% accumulation error over the flown distance, stable positioning is achieved over several minutes of flight time. The main limitations are flight altitudes above the radar range of 750 m where the monocular method will suffer from scale drift, and, depending on the flight speed, flights below 50 m where image processing gets difficult with a downwards-looking camera due to the high optical flow rates and the low image overlap.
Resumo:
This paper proposes an experimental study of quality metrics that can be applied to visual and infrared images acquired from cameras onboard an unmanned ground vehicle (UGV). The relevance of existing metrics in this context is discussed and a novel metric is introduced. Selected metrics are evaluated on data collected by a UGV in clear and challenging environmental conditions, represented in this paper by the presence of airborne dust or smoke. An example of application is given with monocular SLAM estimating the pose of the UGV while smoke is present in the environment. It is shown that the proposed novel quality metric can be used to anticipate situations where the quality of the pose estimate will be significantly degraded due to the input image data. This leads to decisions of advantageously switching between data sources (e.g. using infrared images instead of visual images).
Resumo:
This paper presents the application of a monocular visual SLAMon a fixed-wing small Unmanned Aerial System (sUAS) capable of simultaneous estimation of aircraft pose and scene structure. We demonstrate the robustness of unconstrained vision alone in producing reliable pose estimates of a sUAS, at altitude. It is ultimately capable of online state estimation feedback for aircraft control and next-best-view estimation for complete map coverage without the use of additional sensors.We explore some of the challenges of visual SLAM from a sUAS including dealing with planar structure, distant scenes and noisy observations. The developed techniques are applied on vision data gathered from a fast-moving fixed-wing radio control aircraft flown over a 1×1km rural area at an altitude of 20-100m.We present both raw Structure from Motion results and a SLAM solution that includes FAB-MAP based loop-closures and graph-optimised pose. Timing information is also presented to demonstrate near online capabilities. We compare the accuracy of the 6-DOF pose estimates to an off-the-shelfGPS aided INS over a 1.7kmtrajectory.We also present output 3D reconstructions of the observed scene structure and texture that demonstrates future applications in autonomous monitoring and surveying.
Resumo:
RatSLAM is a navigation system based on the neural processes underlying navigation in the rodent brain, capable of operating with low resolution monocular image data. Seminal experiments using RatSLAM include mapping an entire suburb with a web camera and a long term robot delivery trial. This paper describes OpenRatSLAM, an open-source version of RatSLAM with bindings to the Robot Operating System framework to leverage advantages such as robot and sensor abstraction, networking, data playback, and visualization. OpenRatSLAM comprises connected ROS nodes to represent RatSLAM’s pose cells, experience map, and local view cells, as well as a fourth node that provides visual odometry estimates. The nodes are described with reference to the RatSLAM model and salient details of the ROS implementation such as topics, messages, parameters, class diagrams, sequence diagrams, and parameter tuning strategies. The performance of the system is demonstrated on three publicly available open-source datasets.
Resumo:
The present thesis is focuses on the problem of Simultaneous Localisation and Mapping (SLAM) using only visual data (VSLAM). This means to concurrently estimate the position of a moving camera and to create a consistent map of the environment. Since implementing a whole VSLAM system is out of the scope of a degree thesis, the main aim is to improve an existing visual SLAM system by complementing the commonly used point features with straight line primitives. This enables more accurate localization in environments with few feature points, like corridors. As a foundation for the project, ScaViSLAM by Strasdat et al. is used, which is a state-of-the-art real-time visual SLAM framework. Since it currently only supports Stereo and RGB-D systems, implementing a Monocular approach will be researched as well as an integration of it as a ROS package in order to deploy it on a mobile robot. For the experimental results, the Care-O-bot service robot developed by Fraunhofer IPA will be used.
Resumo:
The underground scenarios are one of the most challenging environments for accurate and precise 3d mapping where hostile conditions like absence of Global Positioning Systems, extreme lighting variations and geometrically smooth surfaces may be expected. So far, the state-of-the-art methods in underground modelling remain restricted to environments in which pronounced geometric features are abundant. This limitation is a consequence of the scan matching algorithms used to solve the localization and registration problems. This paper contributes to the expansion of the modelling capabilities to structures characterized by uniform geometry and smooth surfaces, as is the case of road and train tunnels. To achieve that, we combine some state of the art techniques from mobile robotics, and propose a method for 6DOF platform positioning in such scenarios, that is latter used for the environment modelling. A visual monocular Simultaneous Localization and Mapping (MonoSLAM) approach based on the Extended Kalman Filter (EKF), complemented by the introduction of inertial measurements in the prediction step, allows our system to localize himself over long distances, using exclusively sensors carried on board a mobile platform. By feeding the Extended Kalman Filter with inertial data we were able to overcome the major problem related with MonoSLAM implementations, known as scale factor ambiguity. Despite extreme lighting variations, reliable visual features were extracted through the SIFT algorithm, and inserted directly in the EKF mechanism according to the Inverse Depth Parametrization. Through the 1-Point RANSAC (Random Sample Consensus) wrong frame-to-frame feature matches were rejected. The developed method was tested based on a dataset acquired inside a road tunnel and the navigation results compared with a ground truth obtained by post-processing a high grade Inertial Navigation System and L1/L2 RTK-GPS measurements acquired outside the tunnel. Results from the localization strategy are presented and analyzed.
Resumo:
The goal of this work is to propose a SLAM (Simultaneous Localization and Mapping) solution based on Extended Kalman Filter (EKF) in order to make possible a robot navigates along the environment using information from odometry and pre-existing lines on the floor. Initially, a segmentation step is necessary to classify parts of the image in floor or non floor . Then the image processing identifies floor lines and the parameters of these lines are mapped to world using a homography matrix. Finally, the identified lines are used in SLAM as landmarks in order to build a feature map. In parallel, using the corrected robot pose, the uncertainty about the pose and also the part non floor of the image, it is possible to build an occupancy grid map and generate a metric map with the obstacle s description. A greater autonomy for the robot is attained by using the two types of obtained map (the metric map and the features map). Thus, it is possible to run path planning tasks in parallel with localization and mapping. Practical results are presented to validate the proposal
Resumo:
The development and refinement of techniques that make simultaneous localization and mapping (SLAM) for an autonomous mobile robot and the building of local 3-D maps from a sequence of images, is widely studied in scientific circles. This work presents a monocular visual SLAM technique based on extended Kalman filter, which uses features found in a sequence of images using the SURF descriptor (Speeded Up Robust Features) and determines which features can be used as marks by a technique based on delayed initialization from 3-D straight lines. For this, only the coordinates of the features found in the image and the intrinsic and extrinsic camera parameters are avaliable. Its possible to determine the position of the marks only on the availability of information of depth. Tests have shown that during the route, the mobile robot detects the presence of characteristics in the images and through a proposed technique for delayed initialization of marks, adds new marks to the state vector of the extended Kalman filter (EKF), after estimating the depth of features. With the estimated position of the marks, it was possible to estimate the updated position of the robot at each step, obtaining good results that demonstrate the effectiveness of monocular visual SLAM system proposed in this paper
Resumo:
En el ámbito de la robótica de servicio, actualmente no existe una solución automatizada para la inspección ultrasónica de las partes de material compuesto de una aeronave durante las operaciones de mantenimiento que realiza la aerolínea. El desarrollo de las nuevas técnicas de acoplamiento acústico en seco en el método de inspección no destructiva por ultrasonidos, está conduciendo a posibilitar su uso con soluciones de menor coste respecto a las técnicas tradicionales, sin perder eficacia para detectar las deficiencias en las estructuras de material compuesto. Aunque existen aplicaciones de esta técnica con soluciones manuales, utilizadas en las fases de desarrollo y fabricación del material compuesto, o con soluciones por control remoto en sectores diferentes al aeronáutico para componentes metálicos, sin embargo, no existen con soluciones automatizadas para la inspección no destructiva por ultrasonidos de las zonas del avión fabricadas en material compuesto una vez la aeronave ha sido entregada a la aerolínea. El objetivo de este trabajo fin de master es evaluar el sistema de localización, basado en visión por ordenador, de una solución robotizada aplicada la inspección ultrasónica estructural de aeronaves en servicio por parte de las propias aerolíneas, utilizando las nuevas técnicas de acoplamiento acústico en seco, buscando la ventaja de reducir los tiempos y los costes en las operaciones de mantenimiento. Se propone como solución un robot móvil autónomo de pequeño tamaño, con control de posición global basado en técnicas de SLAM Visual Monocular, utilizando marcadores visuales externos para delimitar el área de inspección. Se ha supuesto la inspección de elementos de la aeronave cuya superficie se pueda considerar plana y horizontal, como son las superficies del estabilizador horizontal o del ala. Este supuesto es completamente aceptable en zonas acotadas de estos componentes, y de cara al objetivo del proyecto, no le resta generalidad. El robot móvil propuesto es un vehículo terrestre triciclo, de dos grados de libertad, con un sistema de visión monocular completo embarcado, incluyendo el hardware de procesamiento de visión y control de trayectoria. Las dos ruedas delanteras son motrices y la tercera rueda, loca, sirve únicamente de apoyo. La dirección, de tipo diferencial, permite al robot girar sin necesidad de desplazamiento, al conseguirse por diferencia de velocidad entre la rueda motriz derecha e izquierda. El sistema de inspección ultrasónica embarcado está compuesto por el hardware de procesamiento y registro de señal, y una rueda-sensor situada coaxialmente al eje de las ruedas motrices, y centrada entre estas, de modo que la medida de inspección se realiza en el centro de rotación del robot. El control visual propuesto se realiza mediante una estrategia “ver y mover” basada en posición, ejecutándose de forma secuencial la extracción de características visuales de la imagen, el cálculo de la localización global del robot mediante SLAM visual y el movimiento de éste mediante un algoritmo de control de posición-orientación respecto a referencias de paso de la trayectoria. La trayectoria se planifica a partir del mapa de marcas visuales que delimitan el área de inspección, proporcionado también por SLAM visual. Para validar la solución propuesta se ha optado por desarrollar un prototipo físico tanto del robot como de los marcadores visuales externos, a los que se someterán a una prueba de validación como alternativa a utilizar un entorno simulado por software, consistente en el reconocimiento del área de trabajo, planeamiento de la trayectoria y recorrido de la misma, de forma autónoma, registrando el posicionamiento real del robot móvil junto con el posicionamiento proporcionado por el sistema de localización SLAM. El motivo de optar por un prototipo es validar la solución ante efectos físicos que son muy complicados de modelar en un entorno de simulación, derivados de las limitaciones constructivas de los sistemas de visión, como distorsiones ópticas o saturación de los sensores, y de las limitaciones constructivas de la mecánica del robot móvil que afectan al modelo cinemático, como son el deslizamiento de las ruedas o la fluctuación de potencia de los motores eléctricos. El prototipo de marcador visual externo utilizado para la prueba de validación, ha sido un símbolo plano vertical, en blanco y negro, que consta de un borde negro rectangular dentro del cual se incluye una serie de marcas cuadradas de color negro, cuya disposición es diferente para cada marcador, lo que permite su identificación. El prototipo de robot móvil utilizado para la prueba de validación, ha sido denominado VINDUSTOR: “VIsual controlled Non-Destructive UltraSonic inspecTOR”. Su estructura mecánica ha sido desarrollada a partir de la plataforma comercial de robótica educacional LEGO© MINDSTORMS NXT 2.0, que incluye los dos servomotores utilizados para accionar las dos ruedas motrices, su controlador, las ruedas delanteras y la rueda loca trasera. La estructura mecánica ha sido especialmente diseñada con piezas LEGO© para embarcar un ordenador PC portátil de tamaño pequeño, utilizado para el procesamiento visual y el control de movimiento, y el sistema de captación visual compuesto por dos cámaras web de bajo coste, colocadas una en posición delantera y otra en posición trasera, con el fin de aumentar el ángulo de visión. El peso total del prototipo no alcanza los 2 Kg, siendo sus dimensiones máximas 20 cm de largo, 25 cm de ancho y 26 cm de alto. El prototipo de robot móvil dispone de un control de tipo visual. La estrategia de control es de tipo “ver y mover” dinámico, en la que se realiza un bucle externo, de forma secuencial, la extracción de características en la imagen, la estimación de la localización del robot y el cálculo del control, y en un bucle interno, el control de los servomotores. La estrategia de adquisición de imágenes está basada en un sistema monocular de cámaras embarcadas. La estrategia de interpretación de imágenes está basada en posición tridimensional, en la que los objetivos de control se definen en el espacio de trabajo y no en la imagen. La ley de control está basada en postura, relacionando la velocidad del robot con el error en la posición respecto a las referencias de paso de una trayectoria. La trayectoria es generada a partir del mapa de marcadores visuales externo. En todo momento, la localización del robot respecto a un sistema de referencia externo y el mapa de marcadores, es realizado mediante técnicas de SLAM visual. La auto-localización de un robot móvil dentro de un entorno desconocido a priori constituye uno de los desafíos más importantes en la robótica, habiéndose conseguido su solución en las últimas décadas, con una formulación como un problema numérico y con implementaciones en casos que van desde robots aéreos a robots en entornos cerrados, existiendo numerosos estudios y publicaciones al respecto. La primera técnica de localización y mapeo simultáneo SLAM fue desarrollada en 1989, más como un concepto que como un algoritmo único, ya que su objetivo es gestionar un mapa del entorno constituido por posiciones de puntos de interés, obtenidos únicamente a partir de los datos de localización recogidos por los sensores, y obtener la pose del robot respecto al entorno, en un proceso limitado por el ruido de los sensores, tanto en la detección del entorno como en la odometría del robot, empleándose técnicas probabilísticas aumentar la precisión en la estimación. Atendiendo al algoritmo probabilístico utilizado, las técnicas SLAM pueden clasificarse en las basadas en Filtros de Kalman, en Filtros de Partículas y en su combinación. Los Filtros de Kalman consideran distribuciones de probabilidad gaussiana tanto en las medidas de los sensores como en las medidas indirectas obtenidas a partir de ellos, de modo que utilizan un conjunto de ecuaciones para estimar el estado de un proceso, minimizando la media del error cuadrático, incluso cuando el modelo del sistema no se conoce con precisión, siendo el más utilizado el Filtro de Kalman Extendido a modelos nolineales. Los Filtros de Partículas consideran distribuciones de probabilidad en las medidas de los sensores sin modelo, representándose mediante un conjunto de muestras aleatorias o partículas, de modo que utilizan el método Montecarlo secuencial para estimar la pose del robot y el mapa a partir de ellas de forma iterativa, siendo el más utilizado el Rao-Backwell, que permite obtener un estimador optimizado mediante el criterio del error cuadrático medio. Entre las técnicas que combinan ambos tipos de filtros probabilísticos destaca el FastSLAM, un algoritmo que estima la localización del robot con un Filtro de Partículas y la posición de los puntos de interés mediante el Filtro de Kalman Extendido. Las técnicas SLAM puede utilizar cualquier tipo de sensor que proporcionen información de localización, como Laser, Sonar, Ultrasonidos o Visión. Los sensores basados en visión pueden obtener las medidas de distancia mediante técnicas de visión estereoscópica o mediante técnica de visión monocular. La utilización de sensores basados en visión tiene como ventajas, proporcionar información global a través de las imágenes, no sólo medida de distancia, sino también información adicional como texturas o patrones, y la asequibilidad del hardware frente a otros sensores. Sin embargo, su principal inconveniente es el alto coste computacional necesario para los complejos algoritmos de detección, descripción, correspondencia y reconstrucción tridimensional, requeridos para la obtención de la medida de distancia a los múltiples puntos de interés procesados. Los principales inconvenientes del SLAM son el alto coste computacional, cuando se utiliza un número elevado de características visuales, y su consistencia ante errores, derivados del ruido en los sensores, del modelado y del tratamiento de las distribuciones de probabilidad, que pueden producir el fallo del filtro. Dado que el SLAM basado en el Filtro de Kalman Extendido es una las técnicas más utilizadas, se ha seleccionado en primer lugar cómo solución para el sistema de localización del robot, realizando una implementación en la que las medidas de los sensores y el movimiento del robot son simulados por software, antes de materializarla en el prototipo. La simulación se ha realizado considerando una disposición de ocho marcadores visuales que en todo momento proporcionan ocho medidas de distancia con ruido aleatorio equivalente al error del sensor visual real, y un modelo cinemático del robot que considera deslizamiento de las ruedas mediante ruido aleatorio. Durante la simulación, los resultados han mostrado que la localización estimada por el algoritmo SLAM-EKF presenta tendencia a corregir la localización obtenida mediante la odometría, pero no en suficiente cuantía para dar un resultado aceptable, sin conseguir una convergencia a una solución suficientemente cercana a la localización simulada del robot y los marcadores. La conclusión obtenida tras la simulación ha sido que el algoritmo SLAMEKF proporciona inadecuada convergencia de precisión, debido a la alta incertidumbre en la odometría y a la alta incertidumbre en las medidas de posición de los marcadores proporcionadas por el sensor visual. Tras estos resultados, se ha buscado una solución alternativa. Partiendo de la idea subyacente en los Filtros de Partículas, se ha planteado sustituir las distribuciones de probabilidad gaussianas consideradas por el Filtro de Kalman Extendido, por distribuciones equi-probables que derivan en funciones binarias que representan intervalos de probabilidad no-nula. La aplicación de Filtro supone la superposición de todas las funciones de probabilidad no-nula disponibles, de modo que el resultado es el intervalo donde existe alguna probabilidad de la medida. Cómo la efectividad de este filtro aumenta con el número disponible de medidas, se ha propuesto obtener una medida de la localización del robot a partir de cada pareja de medidas disponibles de posición de los marcadores, haciendo uso de la Trilateración. SLAM mediante Trilateración Estadística (SLAM-ST) es como se ha denominado a esta solución propuesta en este trabajo fin de master. Al igual que con el algoritmo SLAM-EKF, ha sido realizada una implementación del algoritmo SLAM-ST en la que las medidas de los sensores y el movimiento del robot son simulados, antes de materializarla en el prototipo. La simulación se ha realizado en las mismas condiciones y con las mismas consideraciones, para comparar con los resultados obtenidos con el algoritmo SLAM-EKF. Durante la simulación, los resultados han mostrado que la localización estimada por el algoritmo SLAM-ST presenta mayor tendencia que el algoritmo SLAM-EKF a corregir la localización obtenida mediante la odometría, de modo que se alcanza una convergencia a una solución suficientemente cercana a la localización simulada del robot y los marcadores. Las conclusiones obtenidas tras la simulación han sido que, en condiciones de alta incertidumbre en la odometría y en la medida de posición de los marcadores respecto al robot, el algoritmo SLAM-ST proporciona mejores resultado que el algoritmo SLAM-EKF, y que la precisión conseguida sugiere la viabilidad de la implementación en el prototipo. La implementación del algoritmo SLAM-ST en el prototipo ha sido realizada en conjunción con la implementación del Sensor Visual Monocular, el Modelo de Odometría y el Control de Trayectoria. El Sensor Visual Monocular es el elemento del sistema SLAM encargado de proporcionar la posición con respecto al robot de los marcadores visuales externos, a partir de las imágenes obtenidas por las cámaras, mediante técnicas de procesamiento de imagen que permiten detectar e identificar los marcadores visuales que se hallen presentes en la imagen capturada, así como obtener las características visuales a partir de las cuales inferir la posición del marcador visual respecto a la cámara, mediante reconstrucción tridimensional monocular, basada en el conocimiento a-priori del tamaño real del mismo. Para tal fin, se ha utilizado el modelo matemático de cámara pin-hole, y se ha considerado las distorsiones de la cámara real mediante la calibración del sensor, en vez de utilizar la calibración de la imagen, tras comprobar el alto coste computacional que requiere la corrección de la imagen capturada, de modo que la corrección se realiza sobre las características visuales extraídas y no sobre la imagen completa. El Modelo de Odometría es el elemento del sistema SLAM encargado de proporcionar la estimación de movimiento incremental del robot en base a la información proporcionada por los sensores de odometría, típicamente los encoders de las ruedas. Por la tipología del robot utilizado en el prototipo, se ha utilizado un modelo cinemático de un robot tipo uniciclo y un modelo de odometría de un robot móvil de dos ruedas tipo diferencial, en el que la traslación y la rotación se determinan por la diferencia de velocidad de las ruedas motrices, considerando que no existe deslizamiento entre la rueda y el suelo. Sin embargo, el deslizamiento en las ruedas aparece como consecuencia de causas externas que se producen de manera inconstante durante el movimiento del robot que provocan insuficiente contacto de la rueda con el suelo por efectos dinámicos. Para mantener la validez del modelo de odometría en todas estas situaciones que producen deslizamiento, se ha considerado un modelo de incertidumbre basado en un ensayo representativo de las situaciones más habituales de deslizamiento. El Control de Trayectoria es el elemento encargado de proporcionar las órdenes de movimiento al robot móvil. El control implementado en el prototipo está basado en postura, utilizando como entrada la desviación en la posición y orientación respecto a una referencia de paso de la trayectoria. La localización del robot utilizada es siempre de la estimación proporcionada por el sistema SLAM y la trayectoria es planeada a partir del conocimiento del mapa de marcas visuales que limitan el espacio de trabajo, mapa proporcionado por el sistema SLAM. Las limitaciones del sensor visual embarcado en la velocidad de estabilización de la imagen capturada han conducido a que el control se haya implementado con la estrategia “mirar parado”, en la que la captación de imágenes se realiza en posición estática. Para evaluar el sistema de localización basado en visión del prototipo, se ha diseñado una prueba de validación que obtenga una medida cuantitativa de su comportamiento. La prueba consiste en la realización de forma completamente autónoma de la detección del espacio de trabajo, la planificación de una trayectoria de inspección que lo transite completamente, y la ejecución del recorrido de la misma, registrando simultáneamente la localización real del robot móvil junto con la localización proporcionada por el sistema SLAM Visual Monocular. Se han realizado varias ejecuciones de prueba de validación, siempre en las mismas condiciones iniciales de posición de marcadores visuales y localización del robot móvil, comprobando la repetitividad del ensayo. Los resultados presentados corresponden a la consideración de las medidas más pesimistas obtenidas tras el procesamiento del conjunto de medidas de todos los ensayos. Los resultados revelan que, considerando todo el espacio de trabajo, el error de posición, diferencia entre los valores de proporcionados por el sistema SLAM y los valores medidos de posición real, se encuentra en el entorno de la veintena de centímetros. Además, los valores de incertidumbre proporcionados por el sistema SLAM son, en todos los casos, superiores a este error. Estos resultados conducen a concluir que el sistema de localización basado en SLAM Visual, mediante un algoritmo de Trilateración Estadística, usando un sensor visual monocular y marcadores visuales externos, funciona, proporcionando la localización del robot móvil con respecto al sistema de referencia global inicial y un mapa de su situación de los marcadores visuales, con precisión limitada, pero con incertidumbre conservativa, al estar en todo momento el error real de localización por debajo del error estimado. Sin embargo, los resultados de precisión del sistema de localización no son suficientemente altos para cumplir con los requerimientos como solución robotizada aplicada a la inspección ultrasónica estructural de aeronaves en servicio. En este sentido, los resultados sugieren que la posible continuación de este trabajo en el futuro debe centrarse en la mejora de la precisión de localización del robot móvil, con líneas de trabajo encaminadas a mejorar el comportamiento dinámico del prototipo, en mejorar la precisión de las medidas de posición proporcionadas por el sensor visual y en optimizar el resultado del algoritmo SLAM. Algunas de estas líneas futuras podrían ser la utilización de plataformas robóticas de desarrollo alternativas, la exploración de técnicas de visión por computador complementarias, como la odometría visual, la visión omnidireccional, la visión estereoscópica o las técnicas de reconstrucción tridimensional densa a partir de captura monocular, y el análisis de algoritmos SLAM alternativos condicionado a disponer de una sustancial mejora de precisión en el modelo de odometría y en las medidas de posición de los marcadores.
Resumo:
In this paper we propose a method for vision only topological simultaneous localisation and mapping (SLAM). Our approach does not use motion or odometric information but a sequence of colour histograms from visited places. In particular, we address the perceptual aliasing problem which occurs using external observations only in topological navigation. We propose a Bayesian inference method to incrementally build a topological map by inferring spatial relations from the sequence of observations while simultaneously estimating the robot's location. The algorithm aims to build a small map which is consistent with local adjacency information extracted from the sequence measurements. Local adjacency information is incorporated to disambiguate places which otherwise would appear to be the same. Experiments in an indoor environment show that the proposed technique is capable of dealing with perceptual aliasing using visual observations only and successfully performs topological SLAM.