14 resultados para Monocotyledon
Resumo:
A família Zingiberaceae é a mais representativa da ordem Zingiberales, contendo mais de 1.000 espécies divididas em quatro subfamílias e seis tribos, amplamente distribuídas por todos os continentes. Nas últimas décadas houve um incremento nos estudos relativos à distribuição, o grau de especialização e a funcionalidade dos elementos de vaso em diversas famílias de monocotiledôneas. Entretanto, ainda existem poucos estudos que contribuam para o delineamento dos aspectos evolutivos e ecológicos das tribos de Zingiberaceae. Os objetivos desse trabalho são os de comparar a anatomia dos órgãos subterrâneos e aéreos de oito espécies de Zingiberaceae e estabelecer a distribuição dos elementos traqueais, bem como, o de determinar a especialização dos elementos de vaso de vinte e oito espécies pertencentes a três tribos Alpineae, Zingibereae e Globbeae. As espécies foram coletadas em áreas naturais protegidas e em áreas de cultivos particulares no estado do Rio de Janeiro. Os órgãos subterrâneos e aéreos foram processados de acordo com as técnicas usuais de microscopia óptica e eletrônica de varredura. A análise estrutural do eixo vegetativo das oito espécies pertencentes aos gêneros Alpinia, Renealmia, Curcuma, Hedychium e Zingiber indicam uma similaridade e mostram que os elementos de vaso estão restritos às raízes. Alguns caracteres estruturais dos elementos de vaso, como o tipo da placa de perfuração, o número de barras e o tipo de espessamento parietal se mostraram importantes para o estabelecimento da relação entre as subfamílias e tribos. Zingibereae e Globbeae reúnem estados de caracteres mais basais, como placa de perfuração escalariforme e espessamento parietal espiralado, e os mais derivados são encontrados na tribo Alpinieae, incluindo placa de perfuração simples e espessamento parietal parcialmente pontoado
Resumo:
Embryogenic calli of Kentucky bluegrass, named Md, were induced from mature seeds and embryos, and proliferated on medium K3 containing 2,4-dichlorophenoxyacetic acid (2,4-D, 10.0 mumol/L), 6-benzylaminopurine (BAR, 0.5 mumol/L) and K5 which was the K3 medium supplemented with cupric sulfa (0.5 mumol/L) under dim-light condition (20-30 mumol.m(-2).s-1, 16 h light) at 24 degreesC. Embryogenic calli were transformed with plasmids pDM805 Carring bar and gus genes, Which was mediated by an Agrobacterium strain AGL1, four transgenic lines were obtained. The important factors that affect the transformation efficiency and obtain desirable number of transgenic plants included: (1) the quality of embryogenic calli; (2) light condition and time of co-cultivation; (3) concentration of antibiotics used for suppressing the overgrowth of Agrobacterium in the course of transformed plant regeneration; (4) selection pressure, etc. The micro nutrient of cupric had significant influence on the quality of embryogenic calli. This presentation is the first successful protocol of Kentucky bluegrass transformation mediated by Agrobacterium.
Resumo:
The microtubule-associated protein, MAP65, is a member of a family of divergent microtubule-associated proteins from different organisms generally involved in maintaining the integrity of the central spindle in mitosis. The dicotyledon Arabidopsis thaliana and the monocotyledon rice (Oryza sativa) genomes contain 9 and 11 MAP65 genes, respectively. In this work, we show that the majority of these proteins fall into five phylogenetic clades, with the greatest variation between clades being in the C-terminal random coil domain. At least one Arabidopsis and one rice isotype is within each clade, indicating a functional specification for the C terminus. In At MAP65-1, the C-terminal domain is a microtubule binding region (MTB2) harboring the phosphorylation sites that control its activity. The At MAP65 isotypes show differential localization to microtubule arrays and promote microtubule polymerization with variable efficiency in a MTB2-dependent manner. In vivo studies demonstrate that the dynamics of the association and dissociation of different MAP65 isotypes with microtubules can vary up to 10-fold and that this correlates with their ability to promote microtubule polymerization. Our data demonstrate that the C-terminal variable region, MTB2, determines the dynamic properties of individual isotypes and suggest that slower turnover is conditional for more efficient microtubule polymerization.
Resumo:
Morocco constitutes an important centre of plant diversity and speciation in the Mediterranean Basin. However, numerous species are threatened by issues ranging from human activities to global climatic change. In this study, we present the conservation assessments and Red Listing of the endemic Moroccan monocotyledons according to International Union for Conservation of Nature (IUCN) criteria and categories. For each species, we include basic taxonomic information, local names and synonyms, uses, a distribution map, extent of occurrence, area of occupancy, population size and trend, a description of habitats and ecological requirements, and a discussion of the threats affecting the species and habitats. We assessed the threatened status of the endemic Moroccan monocotyledons at the species level (59 species) using the IUCN Red List criteria and categories (Version 3.1). This study shows the high extinction risk to the Moroccan monocotyledon flora, with 95% of threatened species (20% Critically Endangered, 50% Endangered, 25% Vulnerable) and only 5% not threatened (2% Near Threatened and 3% Least Concern). The flora is thus of conservation concern, which is poorly recognized, both nationally and internationally. The study presents the first part and so far the only national IUCN Red Data List for a large group of Moroccan plants, and thus provides an overview of the threatened Moroccan flora. This IUCN Red List is an important first step towards the recognition of the danger to Moroccan biodiversity hotspots, conservation of threatened species and the raising of public awareness at national and international levels.
Resumo:
Existem muitas opções de herbicidas para aplicações em pré-emergência em cana-de-açúcar, mas o grande desafio atual para a cultura é o controle pós-emergente. O objetivo deste trabalho foi avaliar a eficácia do herbicida mesotrione em mistura com ametryn e metribuzin no controle em pós-emergência de 10 espécies daninhas semeadas em cana-de-açúcar, variedade RB 86-7515. As espécies daninhas selecionadas para o experimento foram: Brachiaria decumbens, Brachiaria plantaginea, Cenchrus echinatus, Digitaria horizontalis, Panicum maximum, Amaranthus deflexus, Bidens pilosa, Euphorbia heterophylla, Ipomoea nil e Sida glaziovii, semeadas nas entrelinhas após a emergência da cultura. Os herbicidas foram aplicados aos 45 dias após o plantio da cana-de-açúcar, com as plantas daninhas monocotiledôneas na fase de terceiro perfilho e as dicotiledôneas com três a quatro pares de folhas, e constaram dos seguintes tratamentos: mesotrione (120 g ha-1); ametryn (2.000 g ha-1); metribuzin (1.920 g ha-1); mesotrione + ametryn (120 g + 2.000 g ha-1); mesotrione + metribuzin (120 g + 1920 g ha-1) e testemunhas no mato e no limpo. Concluiu-se que os herbicidas isolados ou em mistura foram seletivos à cana-de-açúcar. Com relação à eficácia, observou-se que o herbicida mesotrione foi eficiente no controle de A. deflexus; ametryn, no controle de A. deflexus, B. pilosa e I. nil; metribuzin, no controle de A. deflexus, B. pilosa e S. glaziovii; mesotrione + ametryn, no controle de B. decumbens, B. plantaginea, D. horizontalis, P. maximum, A. deflexus, B. pilosa, I. nil e S. glaziovii; e mesotrione + metribuzin, no controle de B. plantaginea, D. horizontalis, P. maximum, A. deflexus, B. pilosa e S. glaziovii. Foi constatado elevado efeito sinergístico do mesotrione com os herbicidas testados, sendo o efeito mais pronunciado na mistura com o ametryn.
Resumo:
Ensiform leaf development in monocotyledons follows a broadly similar sequence in a wide range of relatively unrelated taxa, indicating a plastic developmental pattern, possibly associated with stressed environmental conditions, since Xyris species tend to grow in relatively damp but nutrient-poor environments. The bifacial leaf sheath surrounds the apex and the subadjacent primordium. A conical unifacial leaf tip 'Vorlauferspitze' is established at an early stage, followed by extension growth in the region behind it, generating a unifacial ensiform blade. Root and rhizome structure are also described in a systematic context, particularly in comparison with related taxa in Xyridaceae and other commelinoid monocotyledons, although information on these structure is relatively sparse.
Resumo:
Nectarivorous flower mites can reduce the volume of nectar available to pollinators. The effects of the flower mite Proctolaelaps sp. on nectar availability in flowers of a melittophilous bromeliad Neoregelia johannis (Bromeliaceae) was evaluated in a coastal rain forest in south-eastern Brazil. In a randomized block experiment utilizing 18 flower pairs, one per bromeliad ramet, pollinators (Bombus morio) and mites were excluded, and then nectar volume, sugar concentration and sugar mass were quantified over the anthesis period. Mites significantly reduced nectar volume early in the morning (6h00-8h00), but not later (10h00-12h00). Mites decreased total volume of nectar available up to 22%. Sugar concentration in nectar was higher earlier in the morning, and decreased between 10h00-12h00. The pronounced consumption of nectar by mites during the period of higher sugar concentration reduced the total amount of sugar available to pollinators by 31%. This is the first study showing that flower mites decrease nectar rewards in a melittophilous plant. Because nectar volume by itself incompletely describes nectar production rates and the effects of nectar removal by flower mites on the availability of sugar, our study highlights the inclusion of sugar content in future studies assessing the effects of thieves on nectar production rates. Copyright © 2010 Cambridge University Press.
Resumo:
New data on floral morphology, development, and vasculature in two Brazilian genera of the monocot family Velloziaceae (Pandanales) are used to explore the homologies of their unusual floral structures, especially the corona of Barbacenia and the corona-like appendages and multiple stamens of some Vellozia species. All Velloziaceae have epigynous flowers. Some species of Vellozia are polyandrous, and stamen number can be variable within species. In Vellozia jolyi, there is a single stamen opposite each sepal and a stamen fascicle (of three secondary stamens) opposite each petal. Each stamen possesses a single vascular bundle, and these are united into a single aggregate bundle in proximal regions of the fascicle. Stamens mature centripetally within each fascicle. The coronal appendages of both genera are closely associated with the stamens, but they share some vasculature with the tepals and develop late in ontogeny. The coronal organs cannot readily be homologized with any of the typical floral organs, but they show partial homology with both tepals and stamens. They are most readily interpreted as a late elaboration of the region between the petals and stamens associated with epigyny and the hypanthium. © 2010 by The University of Chicago. All rights reserved.
Resumo:
Petroleum and derivatives have been considered one of the main environmental contaminants. Among petroleum derivatives, the volatile organic compounds benzene, toluene, ethylbenzene and xylene (BTEX) represent a major concern due to their toxicity and easy accumulation in groundwater. Biodegradation methods seem to be suitable tools for the clean-up of BTEX contaminants from groundwater. Genotoxic and mutagenic potential of BTEX prior and after biodegradation process was evaluated through analyses of chromosomal aberrations and MN test in meristematic and F 1 root cells using the Allium cepa test system. Seeds of A. cepa were germinated into five concentrations of BTEX, non-biodegraded and biodegraded, in ultra-pure water (negative control), in MMS 4×10 -4M (positive control) and in culture medium used in the biodegradation (blank biodegradation control). Results showed a significant frequency of both chromosomal and nuclear aberrations. The micronucleus (MN) frequency in meristematic cells was significant for most of tested samples. However, MN was not present in significant levels in the F 1 cells, suggesting that there was no permanent damage for the meristematic cell. The BTEX effects were significantly reduced in the biodegraded samples when compared to the respective non-biodegraded concentrations. Therefore, in this study, the biodegradation process showed to be a reliable and effective alternative to treat BTEX-contaminated waters. Based on our results and available data, the BTEX toxicity could also be related to a synergistic effect of its compounds. © 2011 Elsevier Ltd.
Resumo:
The effectiveness of seed dispersal by vertebrates has been analysed by examining both quantitative and qualitative components (Jordano & Schupp 2000, Schupp et al. 2010). While the quantitative component is relatively easily assessed in the field (e.g. visitation rate, number of fruits eaten per visit), the qualitative component (e.g. fate of dispersed seeds, seed treatment in the digestive system of the disperser) is rarely studied under natural conditions, because it is difficult to measure the effects on seeds once ingested by the dispersers (Cortes et al. 2009). © Cambridge University Press 2012.
Resumo:
In this paper a new parasitoid Megastigmus Dalman, 1820 (Hymenoptera: Chalcidoidea: Torymidae: Megastigminae) species was described in the subgenus Torymus, associated with the gall-forming Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae) in eucalypt plantations in Brazil.
Resumo:
Mortality factors that act sequentially through the demographic transitions from seed to sapling may have critical effects on recruitment success. Understanding how habitat heterogeneity influences the causal factors that limit propagule establishment in natural populations is central to assess these demographic bottlenecks and their consequences. Bamboos often influence forest structure and dynamics and are a major factor in generating landscape complexity and habitat heterogeneity in tropical forests. To understand how patch heterogeneity influences plant recruitment we studied critical establishment stages during early recruitment of Euterpe edulis, Sloanea guianensis and Virola bicuhyba in bamboo and non-bamboo stands in the Brazilian Atlantic forest. We combined observational studies of seed rain and seedling emergence with seed addition experiments to evaluate the transition probabilities among regeneration stages within bamboo and non-bamboo stands. The relative importance of each mortality factor was evaluated by determining how the loss of propagules affected stage-specific recruitment success. Our results revealed that the seed addition treatment significantly increased seedling survivorship for all three species. E. edulis seedling survival probability increased in the addition treatment in the two stand types. However, for S. guianensis and V. bicuhyba this effect depended strongly on artificially protecting the seeds, as both species experienced increased seed and seedling losses due to post-dispersal seed predators and herbivores. Propagules of all three species had a greater probability of reaching subsequent recruitment stages when protected. The recruitment of large-seeded V. bicuhyba and E. edulis appears to be much more limited by post-dispersal factors than by dispersal limitation, whereas the small-seeded S. guianensis showed an even stronger effect of post-dispersal factors causing recruitment collapse in some situations. We demonstrated that E. edulis, S. guianensis and V. bicuhyba are especially susceptible to predation during early compared with later establishment stages and this early stage mortality can be more crucial than stand differences as determinants of successful regeneration. Among-species differences in the relative importance of dispersal vs. establishment limitation are mediated by variability in species responses to patch heterogeneity. Thus, bamboo effects on the early recruitment of non-bamboo species are patchy and species-specific, with successional bamboo patches exerting a far-reaching influence on the heterogeneity of plant species composition and abundance. © 2012 Perspectives in Plant Ecology, Evolution and Systematics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Enhanced biodegradation of organic xenobiotic compounds in the rhizosphere is frequently recorded although the specific mechanisms are poorly understood. We have shown that the mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) is enhanced in soil collected from the rhizosphere of Trifolium pratense[e.g. maximum mineralization rate = 7.9 days(-1) and time at maximum rate (t(1)) = 16.7 days for 12-day-old T. pratense soil in comparison with 4.7 days(-1) and 25.4 days, respectively, for non-planted controls). The purpose of this study was to gain a better understanding of the plant-microbe interactions involved in rhizosphere-enhanced biodegradation by narrowing down the identity of the T. pratense rhizodeposit responsible for stimulating the microbial mineralization of 2,4-D. Specifically, we investigated the distribution of the stimulatory component(s) among rhizodeposit fractions (exudates or root debris) and the influence of soil properties and plant species on its production. Production of the stimulatory rhizodeposit was dependent on soil pH (e.g. t(1) for roots grown at pH 6.5 was significantly lower than for those grown at pH 4.4) but independent of soil inorganic N concentration. Most strikingly, the stimulatory rhizodeposit was only produced by T. pratense grown in non-sterile soil and was present in both exudates and root debris. Comparison of the effect of root debris from plant species (three each) from the classes monocotyledon, dicotyledon (non-legume) and dicotyledon (legume) revealed that legumes had by far the greatest positive impact on 2,4-D mineralization kinetics. We discuss the significance of these findings with respect to legume-rhizobia interactions in the rhizosphere.