921 resultados para Monatomic chains
Resumo:
For the metals Au, Pt and Ir it is possible to form freely suspended monatomic chains between bulk electrodes. The atomic chains sustain very large current densities, but finally fail at high bias. We investigate the breaking mechanism, that involves current-induced heating of the atomic wires and electromigration forces. We find good agreement of the observations for Au based on models due to Todorov and co-workers. The high-bias breaking of atomic chains for Pt can also be described by the models, although here the parameters have not been obtained independently. In the limit of long chains the breaking voltage decreases inversely proportional to the length.
Resumo:
One-dimensional monatomic chains are promising candidates for technical applications in the field of nanoelectronics due to their unique mechanical, electrical and optical properties. In particular, we investigate the mechanical properties including Young's modulus, ultimate strength and ultimate strain, which are necessities for the stability of the materials by the Car-Parrinello molecular dynamics in this work. The comparative studies for the alternating carbon-nitrogen (C3N2) chain and carbon chains (carbyne) of different lengths show that the carbon-nitrogen (C-N) chain is obviously stronger and stiffer than carbynes. Thus the C-N chain, which has been found in decomposition products of the nitromethane explosive simulations, could be a superior nano-mechanical material than the carbyne chain. Furthermore, it is found that the bond order of weakest bond in monatomic chains is positively correlated with Young's modulus and ultimate strength of materials.
Resumo:
Graphene has been reported with record-breaking properties which have opened up huge potential applications. A considerable research has been devoted to manipulate or modify the properties of graphene to target a more smart nanoscale device. Graphene and carbon nanotube hybrid structure (GNHS) is one of the promising graphene derivates, while their mechanical properties have been rarely discussed in literature. Therefore, such a studied is conducted in this paper basing on the large-scale molecular dynamics simulation. The target GNHS is constructed by considering two separate graphene layers that being connected by single-wall carbon nanotubes (SWCNTs) according to the experimental observations. It is found that the GNHSs exhibit a much lower yield strength, Young’s modulus, and earlier yielding comparing with a bilayer graphene sheet. Fracture of studied GNHSs is found to fracture located at the connecting region between carbon nanotubes (CNTs) and graphene. After failure, monatomic chains are normally observed at the front of the failure region, and the two graphene layers at the failure region without connecting CNTs will adhere to each other, generating a bilayer graphene sheet scheme (with a layer distance about 3.4 Å). This study will enrich the current understanding of the mechanical performance of GNHS, which will guide the design of GNHS and shed lights on its various applications.
Resumo:
Doping is an effective approach that allows for the intrinsic modification of the electrical and chemical properties of nanomaterials. Recently, a graphene and carbon nanotube hybrid structure (GNHS) has been reported, which extends the excellent properties of carbon-based materials to three dimensions. In this paper, we carried out a first-time investigation on the tensile properties of the hybrid structures with different dopants. It is found that with the presence of dopants, the hybrid structures usually exhibit lower yield strength, Young’s modulus, and earlier yielding compared to that of a pristine hybrid structure. For dopant concentrations below 2.5% no significant reduction of Young’s modulus or yield strength could be observed. For all considered samples, the failure is found to initiate at the region where the nanotubes and graphene sheets are connected. After failure, monatomic chains are normally observed around the failure region. Dangling graphene layers without the separation of a residual CNT wall are found to adhere to each other after failure with a distance of about 3.4 Å. This study provides a fundamental understanding of the tensile properties of the doped graphene–nanotube hybrid structures, which will benefit the design and also the applications of graphene-based hybrid materials.
Resumo:
Supply chain relationships between firms are increasingly important in terms of both competitiveness and developing dynamic capability to respond to rapid changes in the market. Innovation capacity both in firms and in supply chains is also integral to responding to dynamic markets and customer needs. This explorative research examines a sample of firms active in supply chain relationships in Australia, as a pilot study, to examine any linkages between firm dynamic capabilities and supply chains developing innovative capacity to meet competitive and market changes. Initial findings indicate that although firms focus on developing capabilities, particularly dynamic capabilities to innovate individually, these preliminary findings indicate little reliance on developing their supply chain innovation capacity. This study is the initial stage of more extensive research on this topic.
Resumo:
Supply chain management and knowledge management have emerged as two distinct business philosophies in the last decade. Both are making rapid inroads into the construction industry. The premise of this paper is that knowledge management would make it possible for all the trading partners in a supply chain to reap benefits. Current research in knowledge management in the construction industry is generally targeting those big organisations that are main contractors. This has restricted the scope of knowledge management, and limits the benefits to a few, rather than the whole industry. If the construction industry as a whole is to prosper and improve its productivity, strategies for knowledge management strategy at the industry level must be established. This paper argues the case for extending the scope of knowledge management across the full extent of the supply chain, and attempts to identify the benefits that may arise out of sharing knowledge across the supply chain.
Resumo:
The Australian construction industry is a fragmented and profoundly competitive industry with high levels of subcontracting resulting in complex supply chain formations. Traditional methods and forms of communication are being proven as inefficient and losing their charm while participants face heavy volumes of communications that often occurs on a daily basis between trading partners in a supply chain on projects. Information Communication Technologies (ICT), due to their robustness and the ability to quickly disseminate data/information, have the capacity to address highlighted communication issues in a structured and an efficient manner. Timesavings produced by these can be directly translated in terms of productivity gain. This paper presents perceptions of subcontractors working in the construction industry in Melbourne Australia on the use of ICT obtained through an exploratory study.
Resumo:
The increase of buyer-driven supply chains, outsourcing and other forms of non-traditional employment has resulted in challenges for labour market regulation. One business model which has created substantial regulatory challenges is supply chains. The supply chain model involves retailers purchasing products from brand corporations who then outsource the manufacturing of the work to traders who contract with factories or outworkers who actually manufacture the clothing and textiles. This business model results in time and cost pressures being pushed down the supply chain which has resulted in sweatshops where workers systematically have their labour rights violated. Literally millions of workers work in dangerous workplaces where thousands are killed or permanently disabled every year. This thesis has analysed possible regulatory responses to provide workers a right to safety and health in supply chains which provide products for Australian retailers. This thesis will use a human rights standard to determine whether Australia is discharging its human rights obligations in its approach to combating domestic and foreign labour abuses. It is beyond this thesis to analyse Occupational Health and Safety (OHS) laws in every jurisdiction. Accordingly, this thesis will focus upon Australian domestic laws and laws in one of Australia’s major trading partners, the Peoples’ Republic of China (China). It is hypothesised that Australia is currently breaching its human rights obligations through failing to adequately regulate employees’ safety at work in Australian-based supply chains. To prove this hypothesis, this thesis will adopt a three- phase approach to analysing Australia’s regulatory responses. Phase 1 will identify the standard by which Australia’s regulatory approach to employees’ health and safety in supply chains can be judged. This phase will focus on analysing how workers’ rights to safety as a human right imposes a moral obligation on Australia to take reasonablely practicable steps regulate Australian-based supply chains. This will form a human rights standard against which Australia’s conduct can be judged. Phase 2 focuses upon the current regulatory environment. If existing regulatory vehicles adequately protect the health and safety of employees, then Australia will have discharged its obligations through simply maintaining the status quo. Australia currently regulates OHS through a combination of ‘hard law’ and ‘soft law’ regulatory vehicles. The first part of phase 2 analyses the effectiveness of traditional OHS laws in Australia and in China. The final part of phase 2 then analyses the effectiveness of the major soft law vehicle ‘Corporate Social Responsibility’ (CSR). The fact that employees are working in unsafe working conditions does not mean Australia is breaching its human rights obligations. Australia is only required to take reasonably practicable steps to ensure human rights are realized. Phase 3 identifies four regulatory vehicles to determine whether they would assist Australia in discharging its human rights obligations. Phase 3 then analyses whether Australia could unilaterally introduce supply chain regulation to regulate domestic and extraterritorial supply chains. Phase 3 also analyses three public international law regulatory vehicles. This chapter considers the ability of the United Nations Global Compact, the ILO’s Better Factory Project and a bilateral agreement to improve the detection and enforcement of workers’ right to safety and health.
Resumo:
The uniformization method (also known as randomization) is a numerically stable algorithm for computing transient distributions of a continuous time Markov chain. When the solution is needed after a long run or when the convergence is slow, the uniformization method involves a large number of matrix-vector products. Despite this, the method remains very popular due to its ease of implementation and its reliability in many practical circumstances. Because calculating the matrix-vector product is the most time-consuming part of the method, overall efficiency in solving large-scale problems can be significantly enhanced if the matrix-vector product is made more economical. In this paper, we incorporate a new relaxation strategy into the uniformization method to compute the matrix-vector products only approximately. We analyze the error introduced by these inexact matrix-vector products and discuss strategies for refining the accuracy of the relaxation while reducing the execution cost. Numerical experiments drawn from computer systems and biological systems are given to show that significant computational savings are achieved in practical applications.
Resumo:
This research explores supply chain competitiveness and dynamic capabilities. It examines a pilot group of Australian supply chain organisations to understand the importance of dynamic capability in building innovation capacity for competitive advantage, and the concept of adopting a strategic approach to supply chain relationship building. A supply chain is after all a group of intra and interorganisational relationships delivering demand to end-users. This exploratory study confirms a positive relationship between the variables indicating both a strategic intent to develop relational capability, and very strong predictive linkages between the importance placed on developing supply chain dynamic capability and achieving supply chain innovation capacity as a competitive advantage.
Resumo:
Despite the presence of many regulations governing the operation of heavy vehicles and supply chains in Australia, the truck driving sector continues to have the highest incidence of fatal injuries compared to all other industries. The working environment has been the focus of attention by safety researchers during the past few decades, with particular consideration been given to the concept ‘safety culture’ and how to maintain, modify and advance responses to occupational risk. One important aspect of the heavy industry which sets it apart is the existence of cultural or sub-cultural influences at an industry wide and occupation-specific level rather than organisational level. This paper reports on the findings of stakeholder’s perceptions of the influences of power and control, and culture on industry safety. In-depth structured interviews were conducted during 2011 with Australian industry stakeholders (n=31). The questioning surrounded decision-making processes with regards to identifying risks, self-monitoring and reducing risky activities; as well as how power-affected relationships may influence the operational performance of supply chains and impacts on driver safety. One of the most significant findings from these interviews relates to the notion of power. The perception that the ‘Customer is King’ was widely viewed, with the majority of stakeholders believing that there exists a ‘master slave mentality’ in the industry. There appears to be great frustration in the industry as to the apparent immunity of customers (particularly retail supply chains) to their responsibilities. There was also a strong perception that the customer holds the balance of power by covertly employing remuneration-related incentives and pressures. Smaller trucking companies are perceived as being more vulnerable to the pressure of customer expectations.
Resumo:
Knowledge about customers is vital for supply chains in order to ensure customer satisfaction. In an ideal supply chain environment, supply chain partners are able to perform planning tasks collaboratively, because they share information. However, customers are not always able or willing to share information with their suppliers. End consumers, on the one hand, do not usually provide a retail company with demand information. On the other hand, industrial customers might consciously hide information. Wherever a supply chain is not provided with demand forecast information, it needs to derive these demand forecasts by other means. Customer Relationship Management provides a set of tools to overcome informational uncertainty. We show how CRM and SCM information can be integrated on the conceptual as well as technical levels in order to provide supply chain managers with relevant information.
Resumo:
Designers need to consider both the functional and production process requirements at the early stage of product development. A variety of the research works found in the literature has been proposed to assist designers in selecting the most viable manufacturing process chain. However, they do not provide any assistance for designers to evaluate the processes according to the particular circumstances of their company. This paper describes a framework of an Activity and Resource Advisory System (ARAS) that generates advice about the required activities and the possible resources for various manufacturing process chains. The system provides more insight, more flexibility, and a more holistic and suitable approach for designers to evaluate and then select the most viable manufacturing process chain at the early stage of product development.