7 resultados para Molybdoenzymes
Resumo:
J Biol Inorg Chem (2011) 16:443–460 DOI 10.1007/s00775-010-0741-z
Resumo:
Carbon dioxide valorization, will not only help to relieve the greenhouse effect but might also allow us to transform it in value-added chemicals that will help overcoming the energy crisis. To accomplish this goal, more research that focus on sequestering CO2 and endeavors through a carbon-neutral or carbon-negative strategy is needed in order to handle with the dwindling fossil fuel supplies and their environmental impact. Formate dehydrogenases are a promising means of turning CO2 into a biofuel that will allow for a reduction of greenhouse gas emissions and for a significant change to the economic paramount. The main objective of this work was to assess whether a NAD+-independent molybdenum-containing formate dehydrogenase is able to catalyze the reduction of CO2 to formate. To achieve this, a molybdenum-containing formate dehydrogenase was isolated from the sulfate reducing bacteria Desulfovibrio desulfuricans ATCC 27774. Growth conditions were found that allowed for a greater cellular mass recovery and formate dehydrogenase expression. After growth trials, kinetic assays for formate oxidation and CO2 reduction were performed and kinetic parameters determined. For the formate oxidation reaction, a KM of 49 μM and a turnover constant of 146 s-1 were determined. These kinetic parameters are in agreement with those determined by Mota, et al. (2011). Finally, we found that this molybdenum-containing enzyme was able to catalyze the reduction of CO2 to formate with a turnover constant of 4.6 s-1 and a KM of 13 μM. For the first time a NAD+-independent molybdenum-containing formate dehydrogenase was found to catalyze CO2 reduction, allowing its use as a biocatalyst in energetically efficient CO2 fixation processes that can be directed towards bioremediation or as an alternative and renewable energy source. Characterizing these enzymes may lead to the development of more efficient synthetic catalysts, make them readily available and more suited for practical applications.
Resumo:
When Escherichia coli was grown in the presence of tungstate, inactive forms of two molybdoenzymes, nitrate reductase and formate dehydrogenase, accumulated and were converted to their active forms upon incubation of cell suspensions with molybdate and chloramphenicol. The conversion to the active enzymes did not occur in cell extracts. When incubated with [(99)Mo]molybdate and chloramphenicol, the tungstate-grown cells incorporated (99)Mo into protein components which were released from membranes by procedures used to release nitrate reductase and formate dehydrogenase and which migrated with these activities on polyacrylamide gels. Although neither activity was formed during incubation of the crude extract with molybdate, (99)Mo was incorporated into protein components which were released from the membrane fraction under the same conditions and were similar to the active enzymes in their electrophoretic properties. The in vitro incorporation of (99)Mo occurred specifically into these components and was equal to or greater than the amount incorporated in vivo under the same conditions. Molybdenum in preformed, active nitrate reductase and formate dehydrogenase did not exchange with [(99)Mo]molybdate, demonstrating that the observed incorporation depended on the demolybdo forms of the enzymes. We conclude that molybdate may be incorporated into the demolybdo forms both in vivo and in vitro; some unknown additional factor or step, required for active enzyme formation, occurs in vivo but not in vitro under the conditions employed.
Resumo:
Sulfite-oxidizing molybdoenzymes convert the highly reactive and therefore toxic sulfite to sulfate and have been identified in insects, animals, plants, and bacteria. Although the well studied enzymes from higher animals serve to detoxify sulfite that arises from the catabolism of sulfur-containing amino acids, the bacterial enzymes have a central role in converting sulfite formed during dissimilatory oxidation of reduced sulfur compounds. Here we describe the structure of the Starkeya novella sulfite dehydrogenase, a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit, that reveals the molecular mechanism of intramolecular electron transfer in sulfite-oxidizing enzymes. The close approach of the two redox centers in the protein complex (Mo-Fe distance 16.6 angstrom) allows for rapid electron transfer via tunnelling or aided by the protein environment. The high resolution structure of the complex has allowed the identification of potential through-bond pathways for electron transfer including a direct link via Arg-55A and/or an aromatic-mediated pathway. A potential site of electron transfer to an external acceptor cytochrome c was also identified on the SorB subunit on the opposite side to the interaction with the catalytic SorA subunit.