165 resultados para Mollusc
Resumo:
The abundance and species richness of mollusc and crab assemblages were examined in a subtropical mangrove forest in Moreton Bay, Queensland, Australia, which has been disturbed and damaged by the construction of a wooden boardwalk and a path. Sections of the forest immediately adjacent to the boardwalk and path were compared with reference areas to determine whether changes to the small-scale structural complexity within the forest affected the benthic fauna. The disturbed area was characterised by having 65-80% fewer pneumatophores, significantly fewer species and individuals of molluscs, but significantly more species and individuals of crabs than the reference areas. The abundance of mangrove pneumatophores and the attached epiphytic algae were manipulated at two sites to determine whether observed differences in these features could account for the differences in the assemblage of molluscs in the disturbed area of the forest compared with reference areas. Five experimental treatments were used: undisturbed controls, pneumatophore removals (abundance reduced by ca. 65%), epiphytic algal removals (algae removed from ca. 65% of pneumatophores), pneumatophore disturbance controls and algal disturbance controls. The experimental reduction of the abundance of mangrove pneumatophores and the associated epiphytic algae led to significant declines (by as much as 83%) in the number of molluscs utilising the substratum in the modified plots. There was no significant difference in the abundance of molluscs in the pneumatophore and algal removal plots suggesting any effect was primarily related to removal of the epiphytic algae from the surface of the pneumatophores. The responses by the biota to the changes in the physical environment demonstrate that even relatively small-scale modifications to the physical structure of subtropical mangrove forests can lead to significant effects on the diversity and abundance of macrobenthic organisms in these habitats. Such modifications have the potential to cause cascading effects at higher trophic levels with a deterioration in the value of these habitats as nursery and feeding grounds. Future efforts at conservation of these estuarine environments must focus on the prevention or reduction of modifications to the physical structure and integrity of the system, rather than just on the prevention of loss of entire patches of habitat. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We have isolated a homeobox-containing cDNA from the gastropod mollusc Haliotis rufescens that is most similar to members of the Mox homeobox gene class, The derived Haliotis homeodomain sequence is 85% identical to mouse and frog Mox-2 homeodomains and 88.9% identical to the partial cnidarian cnox5-Hm homeodomain. Quantitative reverse transcription-polymerase chain reaction analysis of mRNA accumulation reveals that this gene, called HruMox, is expressed in the larva, but not in the early embryo, Transcripts are most prevalent during larval morphogenesis from trochophore to veliger. There are also transient increases in transcript prevalence 1 and 3 days after the intitiation of metamorphosis from veliger to juvenile. The identification of a molluscan Mox homeobox gene that is more closely related to vertebrate genes than other protostome (e.g. Drosophila) genes suggests the Mox class of homeobox genes may consist of several different families that have been conserved through evolution, (C) 1997 Federation of European Biochemical Societies.
Resumo:
An aqueous solution of the latex of Euphorbia tirucalli collected at sites receiving large amounts of sunlight showed molluscicide action on Biomphalaria glabrata, with LD50 obtained at the concentration of 28,0 ppm and LD90 at the concentration of 85,0 ppm. The toxicity of the product for fish was similar to that of Bayluscide and of copper sulfate used for comparison. However, the wide distribution of the plant, its easy propagation and the simple procedure for extraction of the active substance, which is biodegradable, favor "avelós" as a promising agent in the control of schistosomiasis.
Resumo:
The validity of Biomphalaria kuhniana (Clessin, 1883) is confirmed through morphological study of specimens from Surinam (type locality) and the area of Tucurui (Tocantins river, state of Pará, Brazil) in comparison with B. straminea (Dunker, 1848), and throught crossing experiments which revealed complete reproductive isolation between the two species. The full-grown shell of kuhniana is smaller (about 7.5 mm) than that of straminea (11 mm to 16.5 mm). Anatomically they differ in the degree of corrugation of the vaginal wall (little developed in kuhniana, conspicuous in straminea), number and shape of prostatic diverticula (kuhniana 4 to 9, shorter and less branched; straminea 9 to 18, longer and more branched),number of muscle layers at the middle of the penis (two in kuhniana, three in straminea), distal segment of the spermiduct usually straight or slightly wavy in kuhniana, more or less curly in straminea. Differences between B. kuhniana and B. intermedia (paraense & Deslandes, 1962) are less marked. The latter has a shell up to about 12 mm in diameter, 7 to 15 prostatic diverticula, two muscle layers at the middle of the penis, and a vaginal wall with a combination of a more or less developed corrugation (or sometimes a mere swelling) on the left of the spermathecal duct and a rudimentary pouch on the right of the duct. A Biomphalaria straminea complex is proposed to include that species as well as B. kuhniana and B. intermedia.
Resumo:
The preferred food items of the slugs Laevicaulis alte and the snails Achatina fulica were used to prepare 'poison baits'by injecting the pesticides 'Rogor'and 'Nuvan'to kill these mollusc pests. The 'poison baits'prepared with Thrichosanthes dioica and Lycopersicum esculentum were accepted by 100% individuals of both the species irrespective of the pesticides used. In all cases the slug and the snail individuals died within a considerable length of time following consuption of the bait. The importance of using 'poison bait'lies not only with the sure success in killing the pests but also with the 'safe use'of toxic materials in order to avoid environmental hazards.
Resumo:
Veronicellid slugs are considered the most important intermediate hosts of Angiostrongylus costaricensis, an intra-arterial nematode of rodents. Studies undertaken in three localities in southern Brazil led to identification of molluscs other than veronicellid slugs as hosts of A. costaricensis: Limax maximus, Limax flavus and Bradybaena similaris. These data indicate a low host specificity of larval stages of A. costaricensis, as it has been reported to other congeneric species.
Resumo:
Angiostrongylus costaricensis is a parasitic nematode of rodents and molluscs are the intermediate hosts. Nocturnal collection of molluscs and search for infective third stage larvae of A. costaricensis was carried out in 18 endemic foci identified by the notification of a confirmed diagnosis in human biopsies or surgical specimens. Molluscs were digested in acidic solution and isolation of larvae eventually present was done in a Baermann funnel. Larvae identified by the presence of a delicate groove in the tail were counted to assess the individual parasitic burden. Four species were found infected, with ranges of prevalence in parenthesis: Phyllocaulis variegatus (7% to 33.3%); Bradybaena similaris (11.7% to 24.1%); Belocaulus angustipes (8.3% ) and Phyllocaulis soleiformis (3.3% to 14.2%). Parasitic burden varied from 1 to 75 with P. variegatus, 1 to 98 with B. similaris, 1 to 13 with B. angustipes and 1 larvae in each of two specimens of P. soleiformis. P. variegatus was present in all sites and was found infected with the highest prevalence figures and the highest individual parasitic burdens. These data stress the importance of veronicellid slugs as intermediate hosts for A. costaricensis in the endemic areas in Rio Grande do Sul, Brazil
Resumo:
Background: The degree of metal binding specificity in metalloproteins such as metallothioneins (MTs) can be crucial for their functional accuracy. Unlike most other animal species, pulmonate molluscs possess homometallic MT isoforms loaded with Cu+ or Cd2+. They have, so far, been obtained as native metal-MT complexes from snail tissues, where they are involved in the metabolism of the metal ion species bound to the respective isoform. However, it has not as yet been discerned if their specific metal occupation is the result of a rigid control of metal availability, or isoform expression programming in the hosting tissues or of structural differences of the respective peptides determining the coordinative options for the different metal ions. In this study, the Roman snail (Helix pomatia) Cu-loaded and Cd-loaded isoforms (HpCuMT and HpCdMT) were used as model molecules in order t o elucidate the biochemical and evolutionary mechanisms permitting pulmonate MTs to achieve specificity for their cognate metal ion. Results: HpCuMT and HpCdMT were recombinantly synthesized in the presence of Cd2+, Zn2+ or Cu2+ and corresponding metal complexes analysed by electrospray mass spectrometry and circular dichroism (CD) and ultra violet-visible (UV-Vis) spectrophotometry. Both MT isoforms were only able to form unique, homometallic and stable complexes (Cd6-HpCdMT and Cu12-HpCuMT) with their cognate metal ions. Yeast complementation assays demonstrated that the two isoforms assumed metal-specific functions, in agreement with their binding preferences, in heterologous eukaryotic environments. In the snail organism, the functional metal specificity of HpCdMT and HpCuMT was contributed by metal-specific transcription programming and cell-specific expression. Sequence elucidation and phylogenetic analysis of MT isoforms from a number of snail species revealed that they possess an unspecific and two metal-specific MT isoforms, whose metal specificity was achieved exclusively by evolutionary modulation of non-cysteine amino acid positions. Conclusion: The Roman snail HpCdMT and HpCuMT isoforms can thus be regarded as prototypes of isoform families that evolved genuine metal-specificity within pulmonate molluscs. Diversification into these isoforms may have been initiated by gene duplication, followed by speciation and selection towards opposite needs for protecting copper-dominated metabolic pathways from nonessential cadmium. The mechanisms enabling these proteins to be metal-specific could also be relevant for other metalloproteins.
Resumo:
The active metabolite of vitamin A, retinoic acid (RA), is involved in memory formation and hippocampal plasticity in vertebrates. A similar role for retinoid signaling in learning and memory formation has not previously been examined in an invertebrate species. However, the conservation of retinoid signaling between vertebrates and invertebrates is supported by the presence of retinoid signaling machinery in invertebrates. For example, in the mollusc Lymnaea stagnalis the metabolic enzymes and retinoid receptors have been cloned from the CNS. In this study I demonstrated that impairing retinoid signaling in Lymnaea by either inhibiting RALDH activity or using retinoid receptor antagonists, prevented the formation of long-term memory (LTM). However, learning and intermediate-term memory were not affected. An additional finding was that exposure to constant darkness (due to the light-sensitive nature of RA) itself enhanced memory formation. This memory-promoting effect of darkness was sufficient to overcome the inhibitory effects of RALDH inhibition, but not that of a retinoid receptor antagonist, suggesting that environmental light conditions may influence retinoid signaling. Since RA also influences synaptic plasticity underlying hippocampal-dependent memory formation, I also examined whether RA would act in a trophic manner to influence synapse formation and/or synaptic transmission between invertebrate neurons. However, I found no evidence to support an effect of RA on post-tetanic potentiation of a chemical synapse. Retinoic acid did, however, reduce transmission at electrical synapses in a cell-specific manner. Overall, these studies provide the first evidence for a role of RA in the formation of implicit long-term memories in an invertebrate species and suggest that the role of retinoid signaling in memory formation has an ancient origin.
Resumo:
The present investigation is dedicated to understanding various mechanisms of salinity tolerance in the estuarine clam V. cyprinoides var. cochinensis. Even though V. cyprinoids var. cochinensis and V. cyprinoides are found to coexist in the same area, V. cyprinoids is reported to tolerate higher salinities than variety cochinenesis. Variations in the salinity of sea water may affect the aquatic organisms through specific gravity control and variations in osmotic pressure. The specific gravity of most soft tissues is close to that of normal seawater. Many bottom living forms, both attached and motile, have very high specific gravities eg.villorita cyprinoids. Villorita spp. Occurs abundantly in the reaches of the estuary and backwaters of Kerala. In both marine and estuarine forms, it is observed that mantle employs a lesser quantity of amino acids compared to adductor and foot. The regulation of cell volume is not carried out equally in all types of tissues. The capability of salinity tolerance is an aggregate of both the capabilities of extra cellular anisosmotic and intracellular isosmotic regulations in osmoconforming animals. The ultimate aim of water regulation is to regulate the cell volume.T here are slight changes occur in cell volume even in osmoregulators. These studies can also help in revealing the changes brought about in the cellular organelles like lysosomes, which were found to have a role in the osmoregulatory process. The osmoregulatory machinery of estuarine animals is more streamlined for a successful life in the estuarine regime.
Resumo:
A thirty-six meter thick section of Miocene mica clay of Gross Pampau was studied for molluscs and bolboformas. The molluscs define the regional substages of late Reinbekian to late Langenfeldian. The bolboformas enable the cross-correlation with the nannoplankton subdivision and the geological time scales of BERGGREN et al. (1995). New species are Periploma ariei, Ringicula tiedemanni, Bolboforma robusta badenensis, and Bolboforma contorta.
Resumo:
The carbonate shell of the bivalve Arctica islandica has been recognized, for more than a decade, as a potentially important marine geochemical biorecorder owing to this species' great longevity (200+ years) and wide geographic distribution throughout the northern North Atlantic Ocean, a region vital to global climate and ocean circulation. However, until now this potential has not been realized owing to the difficulty of precisely sampling the shell of this slow growing species. Using newly available automated microsampling techniques combined with micromass stable isotope mass spectrometry, a stable oxygen isotope record (1956-1957 and 1961-1970) has been obtained from a live-captured, 38-year-old A. islandica specimen collected near the former position of the Nantucket Shoals Lightship (41°N. 69°W). The shell's delta18O signal is compared with an expected signal derived from ambient bottom temperature and salinity data recorded at the lightship for the same period. The results show that A islandica's delta18O record (1) is in phase with its growth banding, confirming the annual periodicity of this species' growth bands, (2) is in oxygen isotopic equilibrium with the ambient seawater, (3) shows a consistent shell growth shutdown temperature of ~6°C. which translates into an ~8-month (May-December) shell growth period at this location, and (4) records the ambient bottom temperature with a precision of ~ +/-1.2°C. These results add important information on the life history of this commercially important shellfish species and demonstrate that A. islandica shells can be used to reconstruct inter- and intra-annual records of the continental shelf bottom temperature.