937 resultados para Modulation formats
Resumo:
This paper considers next-generation optical datacommunication standards and discusses the types of modulation formats that are relevant. The performance of several schemes is considered over multimode fibre. The trade-offs between the different modulation formats are considered in terms of link length, receiver sensitivity and complexity of implementation. © 2011 IEEE.
Resumo:
High volumes of data traffic along with bandwidth hungry applications, such as cloud computing and video on demand, is driving the core optical communication links closer and closer to their maximum capacity. The research community has clearly identifying the coming approach of the nonlinear Shannon limit for standard single mode fibre [1,2]. It is in this context that the work on modulation formats, contained in Chapter 3 of this thesis, was undertaken. The work investigates the proposed energy-efficient four-dimensional modulation formats. The work begins by studying a new visualisation technique for four dimensional modulation formats, akin to constellation diagrams. The work then carries out one of the first implementations of one such modulation format, polarisation-switched quadrature phase-shift keying (PS-QPSK). This thesis also studies two potential next-generation fibres, few-mode and hollow-core photonic band-gap fibre. Chapter 4 studies ways to experimentally quantify the nonlinearities in few-mode fibre and assess the potential benefits and limitations of such fibres. It carries out detailed experiments to measure the effects of stimulated Brillouin scattering, self-phase modulation and four-wave mixing and compares the results to numerical models, along with capacity limit calculations. Chapter 5 investigates hollow-core photonic band-gap fibre, where such fibres are predicted to have a low-loss minima at a wavelength of 2μm. To benefit from this potential low loss window requires the development of telecoms grade subsystems and components. The chapter will outline some of the development and characterisation of these components. The world's first wavelength division multiplexed (WDM) subsystem directly implemented at 2μm is presented along with WDM transmission over hollow-core photonic band-gap fibre at 2μm. References: [1]P. P. Mitra, J. B. Stark, Nature, 411, 1027-1030, 2001 [2] A. D. Ellis et al., JLT, 28, 423-433, 2010.
Resumo:
Recent advances in coherent optical receivers is reviewed. Digital-Signal-Processing (DSP) based phase and polarization management techniques make coherent detection robust and feasible. With coherent detection, the complex field of the received optical signal is fully recovered, allowing compensation of linear and nonlinear optical impairments including chromatic dispersion (CD) and polarization-mode dispersion (PMD) using digital filters. Coherent detection and advanced optical modulation formats have become a key ingredient to the design of modern dense wavelength-division multiplexed (DWDM) optical broadband networks. In this paper, firstly we present the different subsystems of a digital coherent optical receiver, and secondly, we will compare the performance of some multi-level and multi-dimensional modulation formats in some physical impairments and in high spectral-efficiency (SE) and high-capacity DWDM transmissions, simulating the DSP with Matlab and the optical network performance with OptiSystem software.
Resumo:
Advanced optical modulation format polarization-division multiplexed quadrature phase shift keying (PDM-QPSK) has become a key ingredient in the design of 100 and 200-Gb/s dense wavelength-division multiplexed (DWDM) networks. The performance of this format varies according to the shape of the pulses employed by the optical carrier: non-return to zero (NRZ), return to zero (RZ) or carrier-suppressed return to zero (CSRZ). In this paper we analyze the tolerance of PDM-QPSK to linear and nonlinear optical impairments: amplified spontaneous emission (ASE) noise, crosstalk, distortion by optical filtering, chromatic dispersion (CD), polarization mode dispersion (PMD) and fiber Kerr nonlinearities. RZ formats with a low duty cycle value reduce pulse-to-pulse interaction obtaining a higher tolerance to CD, PMD and intrachannel nonlinearities.
Resumo:
This thesis presents a theoretical investigation of the application of advanced modelling formats in high-speed fibre lightwave systems. The first part of this work focuses on numerical optimisation of dense wavelength division multiplexing (DWDM) system design. We employ advanced spectral domain filtering techniques and carrier pulse reshaping. We then apply these optimisation methods to investigate spectral and temporal domain characteristics of advanced modulation formats in fibre optic telecommunication systems. Next we investigate numerical methods used in detecting and measuring the system performance of advanced modulation formats. We then numerically study the combination of return-to-zero differential phase-shift keying (RZ-DPSK) with advanced photonic devices. Finally we analyse the dispersion management of Nx40 Gbit/s RZ-DPSK transmission applied to a commercial terrestrial lightwave system.
Resumo:
We investigate electronic mitigation of linear and non-linear fibre impairments and compare various digital signal processing techniques, including electronic dispersion compensation (EDC), single-channel back-propagation (SC-BP) and back-propagation with multiple channel processing (MC-BP) in a nine-channel 112 Gb/s PM-mQAM (m=4,16) WDM system, for reaches up to 6,320 km. We show that, for a sufficiently high local dispersion, SC-BP is sufficient to provide a significant performance enhancement when compared to EDC, and is adequate to achieve BER below FEC threshold. For these conditions we report that a sampling rate of two samples per symbol is sufficient for practical SC-BP, without significant penalties.
Resumo:
In this work, we analyzed by means of numerical and laboratory experiments the resilience of 40 Gb/s amplitude shift keying modulation formats to transmission impairments in standard single-mode fiber lines as well as to optical filtering introduced by the optical add/drop multiplexer cascade. Our study is a pre-requisite to assess the implementation of cost-effective 40 Gb/s modulation technology in next generation high bit-rate robust optical transport networks.
Resumo:
In this work we present extensive comparisons between numerical modelling and experimental measurements of the transmission performance of either CSRZ-ASK or CSRZ-DPSK modulation formats for 40-Gb/s WDM ULH systems on UltraWave (TM) fiber spans with all-Raman amplification. We numerically optimised the amplification and the signal format parameters for both CSRZ-DPSK and CSRZ-ASK formats. Numerical and experimental results show that, in a properly optimized transmission link, the DPSK format permits to double the transmission distance ( for a given BER level) with respect to the ASK format, while keeping a substantial OSNR margin ( on ASK modulation) after the propagation in the fiber line. Our comparison between numerical and experimental results permits to identify what is the most suitable BER estimator in assessing the transmission performance when using the DPSK format. (c) 2007 Optical Society of America.
Resumo:
We report an experimental characterisation examining the impact of differing 50GHz neighbouring modulation formats and bit rates on the performance of 43Gb/s P-DPSK over 1300km of SSMF and LEAF types. Performance is shown to be robust for hybrid P-DPSK and OOK systems. © VDE VERLAG GMBH.
Resumo:
With their compact spectrum and high tolerance to residual chromatic dispersion, duobinary formats are attractive for the deployment of 40 Gb/s technology on 10 Gb/s WDM Long-Haul transmission infrastructures. Here, we compare the robustness of various duobinary formats when facing 40 Gb/s transmission impairments.
Resumo:
We experimentally investigate the robustness of OOK modulation formats at 40 Gbit/s versus transmission impairments and optical filtering. This study is a pre-requisite for the implementation of robust transparent networks.
Resumo:
We demonstrate a simple method to experimentally evaluate nonlinear transmission performance of high order modulation formats using a low number of channels and channel-like ASE. We verify it's behaviour is consistent with the AWGN model of transmission.
Resumo:
In this work, we analyzed by means of numerical and laboratory experiments the resilience of 40 Gb/s amplitude shift keying modulation formats to transmission impairments in standard single-mode fiber lines as well as to optical filtering introduced by the optical add/drop multiplexer cascade. Our study is a pre-requisite to assess the implementation of cost-effective 40 Gb/s modulation technology in next generation high bit-rate robust optical transport networks. © 2006 Optical Society of America.
Resumo:
In this work we present extensive comparisons between numerical modelling and experimental measurements of the transmission performance of either CSRZ-ASK or CSRZ-DPSK modulation formats for 40-Gb/s WDM ULH systems on UltraWave™ fiber spans with all-Raman amplification. We numerically optimised the amplification and the signal format parameters for both CSRZ-DPSK and CSRZ-ASK formats. Numerical and experimental results show that, in a properly optimized transmission link, the DPSK format permits to double the transmission distance (for a given BER level) with respect to the ASK format, while keeping a substantial OSNR margin (on ASK modulation) after the propagation in the fiber line. Our comparison between numerical and experimental results permits to identify what is the most suitable BER estimator in assessing the transmission performance when using the DPSK format. © 2007 Optical Society of America.