959 resultados para Modified Atlantic Water


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the role of the Arctic Ocean Atlantic water (AW) in modifying the Laptev Sea shelf bottom hydrography on the basis of historical records from 1932 to 2008, field observations carried out in April–May 2008, and 2002–2009 cross‐slope measurements. A climatology of bottom hydrography demonstrates warming that extends offshore from the 30–50 m depth contour. Bottom layer temperature‐time series constructed from historical records links the Laptev Sea outer shelf to the AW boundary current transporting warm and saline water from the North Atlantic. The AW warming of the mid‐1990s and the mid‐2000s is consistent with outer shelf bottom temperature variability. For April–May 2008 we observed on‐shelf near‐bottom warm and saline water intrusions up to the 20 m isobath. These intrusions are typically about 0.2°C warmer and 1–1.5 practical salinity units saltier than ambient water. The 2002–2009 cross‐slope observations are suggestive for the continental slope upward heat flux from the AW to the overlying low‐halocline water (LHW). The lateral on‐shelf wind‐driven transport of the LHW then results in the bottom layer thermohaline anomalies recorded over the Laptev Sea shelf. We also found that polynya‐induced vertical mixing may act as a drainage of the bottom layer, permitting a relatively small portion of the AW heat to be directly released to the atmosphere. Finally, we see no significant warming (up until now) over the Laptev Sea shelf deeper than 10–15 m in the historical record. Future climate change, however, may bring more intrusions of Atlanticmodified waters with potentially warmer temperature onto the shelf, which could have a critical impact on the stability of offshore submarine permafrost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The circulation of Atlantic water along the European continental slope, in particular the inflow into the North Sea, influences North Sea water characteristics with consequent changes in the environment affecting plankton community dynamics. The long-term effect of fluctuating oceanographic conditions oil the North Sea, pelagic ecosystem is assessed. It is shown that (i) there are similar regime shifts in the inflow through the northern North Sea and in Sea, Surface Temperature, (ii) long-term phytoplankton trends are influenced by the inflow only in some North Sea regions, and (iii) the spatial variability in chemicophysical and biological parameters highlight the influence of smaller scale processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Atlantic Water (AW) layer in the Arctic Basin is isolated from the atmosphere by the overlaying surface layer, yet observations have revealed that the velocities in this layer exhibit significant variations. Here analysis of a global ocean/sea ice model hindcast, complemented by experiments performed with an idealized process model, is used to investigate what controls the variability of AW circulation, with a focus on the role of wind forcing. The AW circulation carries the imprint of wind variations, both remotely over the Nordic and Barents Seas where they force the AW inflow variability, and locally over the Arctic Basin through the forcing of the wind-driven Beaufort Gyre, which modulates and transfers the wind variability to the AW layer. The strong interplay between the circulation within the surface and AW layers suggests that both layers must be considered to understand variability in either.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Pianosa Contourite Depositional System (CDS) is located in the Corsica Trough (Northern Tyrrhenian Sea), a confined basin dominated by mass transport and contour currents in the eastern flank and by turbidity currents in the western flank. The morphologic and stratigraphic characterisation of the Pianosa CDS is based on multibeam bathymetry, seismic reflection data (multi-channel high resolution mini GI gun, single-channel sparker and CHIRP), sediment cores and ADCP data. The Pianosa CDS is located at shallow to intermediate water depths (170 to 850 m water depth) and is formed under the influence of the Levantine Intermediate Water (LIW). It is 120 km long, has a maximum width of 10 km and is composed of different types of muddy sediment drifts: plastered drift, separated mounded drift, sigmoid drift and multicrested drift. The reduced tectonic activity in the Corsica Trough since the early Pliocene permits to recover a sedimentary record of the contourite depositional system that is only influenced by climate fluctuations. Contourites started to develop in the Middle-Late Pliocene, but their growth was enhanced since the Middle Pleistocene Transition (0.7–0.9 Ma). Although the general circulation of the LIW, flowing northwards in the Corsica Trough, remained active all along the history of the system, contourite drift formation changed, controlled by sediment influx and bottom current velocity. During periods of sea level fall, fast bottom currents often eroded the drift crest in the middle and upper slope. At that time the proximity of the coast to the shelf edge favoured the formation of bioclastic sand deposits winnowed by bottom currents. Higher sediment accumulation of mud in the drifts occurred during periods of fast bottom currents and high sediment availability (i.e. high activity of turbidity currents), coincident with periods of sea level low-stands. Condensed sections were formed during sea level high-stands, when bottom currents were more sluggish and the turbidite system was disconnected, resulting in a lower sediment influx.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Only a few studies have examined the variation of oxygen and hydrogen isotopes of seawater in NE Atlantic water masses, and data are especially sparse for intermediate and deep-water masses. The current study greatly expands this record with 527 d18O values from 47 stations located throughout the mid- to low-latitude NE Atlantic. In addition, dD was analyzed in the 192 samples collected along the GEOTRACES North Atlantic Transect GA03 (GA03_e=KN199-4) and the 115 Iberia-Forams cruise samples from the western and southern Iberian margin. An intercomparison study between the two stable isotope measurement techniques (cavity ring-down laser spectroscopy and magnetic-sector isotope ratio mass spectrometry) used to analyze GA03_e samples reveals relatively good agreement for both hydrogen and oxygen isotope ratios. The surface (0-100 m) and central (100-500 m) water isotope data show the typical, evaporation related trend of increasing values equatorward with the exception for the zonal transect off Cape Blanc, NW Africa. Off Cape Blanc, surface water isotope signatures are modified by the upwelling of fresher Antarctic Intermediate Water (AAIW) that generally has isotopic values of 0.0 to 0.5 per mil for d18O and 0 to 2 per mil for dD. Along the Iberian margin the Mediterranean Outflow Water (MOW) is clearly distinguished by its high d18O (0.5-1.1 per mil) and dD (3-6 per mil) values that can be traced into the open Atlantic. Isotopic values in the NE Atlantic Deep Water (NEADW) are relatively low (d18O: -0.1 to 0.5 per mil; dD: -1 to 4 per mil) and show a broader range than observed previously in the northern and southern convection areas. The NEADW is best observed at GA03_e Stations 5 and 7 in the central NE Atlantic basin. Antarctic Bottom Water isotope values are relatively high indicating modification of the original Antarctic source water along the flow path. The reconstructed d18O-salinity relationship for the complete data set has a slope of 0.51, i.e., slightly steeper than the 0.46 described previously by Pierre et al. (1994, J. Mar. Syst. 5 (2), 159-170.) for the tropical to subtropical Northeast Atlantic. This slope decreases to 0.46 for the subtropical North Atlantic Central Water (NACW) and the MOW and to 0.32 for the surface waters of the upper 50 m. The dD-salinity mixing lines have estimated slopes of 3.01 for the complete data, 1.26 for the MOW, 3.47 for the NACW, and 2.63 for the surface waters. The slopes of the d18O-dD relationship are significantly lower than the one for the Global Meteoric Water Line with 5.6 for the complete data set, 2.30 for the MOW, 4.79 for the NACW, and 3.99 for the surface waters. The lower slopes in all the relationships clearly reflect the impact of the evaporation surplus in the subtropics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The delta13C and Cd measurements from benthic foraminifera from Biogeochemical Ocean Flux Study (BOFS) northeast Atlantic Ocean sediment cores are presented. The delta13C values in glacial foraminifera are consistent with those from elsewhere in the North Atlantic Ocean. For intermediate water (1000 - 2000 m water depth), delta13C values were higher at the last glacial maximum than in present North Atlantic Deep Water (NADW), whereas for deep water (>2000 m) they were lower during the glacial maximum. The Cd concentrations of glacial northeast Atlantic intermediate water were lower than those of present NADW. However, deepwater Cd concentrations increased to values between NADW and present Pacific Deep Water (PDW). The delta13C and Cd data are consistent and show that the northeast Atlantic Ocean was strongly stratified with 13C enriched, low Cd intermediate water overlying 13C depleted, high Cd deep water. The glacial water column comprised two different water masses: deep water, similar in character to present Antarctic Bottom Water (AABW), and intermediate water, different in character from both AABW and NADW, and any present intermediate-depth North Atlantic water. The characteristics of glacial intermediate water were, however, similar to present near-surface waters in the North Atlantic, which suggests rapid ventilation of the glacial ocean to depths of up to 2000 m by cold, nutrient-depleted young surface waters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We determined d18OCib values of live (Rose Bengal stained) and dead epibenthic foraminifera Cibicidoides wuellerstorfi, Cibicides lobatulus, and Cibicides refulgens in surface sediment samples from the Arctic Ocean and the Greenland, Iceland, and Norwegian seas (Nordic Sea). This is the first time that a comprehensive d18OCib data set is generated and compiled from the Arctic Ocean. For comparison, we defined Atlantic Water (AW), upper Arctic Bottom Water (uABW), and Arctic Bottom Water (ABW) by their temperature/salinity characteristics and calculated mean equilibrium calcite d18Oequ from summer sea-water d18Ow and in situ temperatures. As a result, in the Arctic environment we compensate for Cibicidoides- and Cibicides-specific offsets from equilibrium calcite of -0.35 and -0.55 per mil, respectively. After this taxon-specific adjustment, mean d18OCib values plausibly reflect the density stratification of principle water masses in the Nordic Sea and Arctic Ocean. In addition, mean d18OCib from AW not only significantly differs from mean d18OCib from ABW, but also d18OCib from within AW differentiates in function of provenience and water mass age. Furthermore, in shallow waters brine-derived low d18Ow can significantly lower the d18OCib of Cibicides spp. and thus d18OCib may serve as a paleobrine indicator. There is no statistically significant difference, however, between deeper water masses mean d18OCib of the Nordic Sea, and of the Eurasian and Amerasian basins, and no influence of low-d18Ow brines is recorded in Recent uABW and ABW d18OCib of C. wuellerstorfi. This may be due to dilution of a low-d18Ow brine signal in the deep sea, and/or to preferential incorporation of relatively high-d18Ow brines from high-salinity shelves. Although our data encompass environments with seasonal sea-ice and brine formation supposed to ultimately ventilate the deep Arctic Ocean, d18OCib from uABW and ABW do not indicate negative excursions. This may challenge hypotheses that call for enhanced Arctic brine release to explain negative benthic d18O spikes in deep-sea sediments from the late Pleistocene North Atlantic Ocean.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The feeding strategies of Calanus hyperboreus, C. glacialis, and C. finmarchicus were investigated in the high-Arctic Svalbard region (77-81 °N) in May, August, and December, including seasons with algal blooms, late- to post-bloom situations, and unproductive winter periods. Stable isotope and fatty acid trophic marker (FATM) techniques were employed together to assess trophic level (TL), carbon sources (phytoplankton vs. ice algae), and diet of the three Calanus species. In addition, population development, distribution, and nutritional state (i.e. storage lipids) were examined to estimate their population status at the time of sampling. In May and August, the vertical distribution of the three Calanus species usually coincided with the maximum algal biomass. Their stable isotope and fatty acid (FA) composition indicated that they all were essentially herbivores in May, when the algal biomass was highest. Their FA composition, however, revealed different food preferences. C. hyperboreus had high proportions of 18:4n3, suggesting that it fed mainly on Phaeocystis, whereas C. glacialis and C. finmarchicus had high proportions of 16:4n1, 16:1n7, and 20:5n3, suggesting diatoms as their major food source. Carbon sources (i.e. phytoplankton vs. ice algae) were not possible to determine solely from FATM techniques since ice-diatoms and pelagic-diatoms were characterised by the same FA. However, the enriched d13C values of C. glacialis and C. finmarchicus in May indicated that they fed both on pelagic- and ice-diatoms. Patterns in absolute FA and fatty alcohol composition revealed that diatoms were the most important food for C. hyperboreus and C. glacialis, followed by Phaeocystis, whereas diatoms, Phaeocystis and other small autotrophic flagellates were equally important food for C. finmarchicus. During periods of lower algal biomass, only C. glacialis exhibited evidence of significant dietary switch, with a TL indicative of omnivory (mean TL=2.4). Large spatial variability was observed in population development, distribution, and lipid store sizes in August. At the northernmost station at the southern margin of the Arctic Ocean, the three Calanus species had similarly low lipid stores as they had in May, suggesting that they ascended later in the year. In December, relatively lipid-rich specimens had TL similar to those during the peak productive season (TL~2.0), suggesting that they were hibernating and not feeding on the available refractory material available at that time of the year. In contrast, lipid-poor specimens in December had substantially high TL (TL=2.5), suggesting that they were active and possibly were feeding.