996 resultados para Modern Humans
Resumo:
The anatomical comparative studies among the primates are important for the investigation of ethology, evolution, taxonomy, and comprehension of tools by hominoids. Especially the anatomical knowledge of Cebus contributes to conservation of the species, and to development of surgical procedures and clinical treatments of these animals, as they frequently are victims of automobile accidents. Recent anatomical studies came to a wrong conclusion regarding behavioral traits of Cebus, ascribed to few data available in previous literature. Therefore, to provide anatomical data and to support the other sciences related to anatomy, and to develop surgical and/or clinical procedures, we described the nerves of the legs of Cebus foccusing on their position and trajectory, as wll as innerved muscles, and compared these results with those of humans and other primates. Eight adult capuchin specimens were used for this study. The anatomical comparative study of the leg's nerves of Cebus demonstrated that, in general, structural organization of the nerves is similar among the four primates analyzed here (Cebus, chimpanzees, baboons and humans), which might be attributed to the fact that the all four primates have similar body structures. However, nerve trajectory and muscles innervation in Cebus was more similar to baboons.
Resumo:
The extent to which past climate change has dictated the pattern and timing of the out-of-Africa expansion by anatomically modern humans is currently unclear [Stewart JR, Stringer CB (2012) Science 335:1317–1321]. In particular, the incompleteness of the fossil record makes it difficult to quantify the effect of climate. Here, we take a different approach to this problem; rather than relying on the appearance of fossils or archaeological evidence to determine arrival times in different parts of the world, we use patterns of genetic variation in modern human populations to determine the plausibility of past demographic parameters. We develop a spatially explicit model of the expansion of anatomically modern humans and use climate reconstructions over the past 120 ky based on the Hadley Centre global climate model HadCM3 to quantify the possible effects of climate on human demography. The combinations of demographic parameters compatible with the current genetic makeup of worldwide populations indicate a clear effect of climate on past population densities. Our estimates of this effect, based on population genetics, capture the observed relationship between current climate and population density in modern hunter–gatherers worldwide, providing supporting evidence for the realism of our approach. Furthermore, although we did not use any archaeological and anthropological data to inform the model, the arrival times in different continents predicted by our model are also broadly consistent with the fossil and archaeological records. Our framework provides the most accurate spatiotemporal reconstruction of human demographic history available at present and will allow for a greater integration of genetic and archaeological evidence.
Resumo:
We introduce a new genetic distance for microsatellite loci, incorporating features of the stepwise mutation model, and test its performance on microsatellite polymorphisms in humans, chimpanzees, and gorillas. We find that it performs well in determining the relations among the primates, but less well than other distance measures (not based on the stepwise mutation model) in determining the relations among closely related human populations. However, the deepest split in the human phylogeny seems to be accurately reconstructed by the new distance and separates African and non-African populations. The new distance is independent of population size and therefore allows direct estimation of divergence times if the mutation rate is known. Based on 30 microsatellite polymorphisms and a recently reported average mutation rate of 5.6 x 10(-4) at 15 dinucleotide microsatellites, we estimate that the deepest split in the human phylogeny occurred about 156,000 years ago. Unlike most previous estimates, ours requires no external calibration of the rate of molecular evolution. We can use such calibrations, however, to test our estimate.
Resumo:
MC is grateful to Karen Lupo and Brian Codding for the invitation to participate in the symposium honouring Jim O’Connell at the 2015 annual meeting of the Society for American Archaeology in San Francisco, and for the invitation to contribute to this special issue of the Journal of Anthropological Archaeology. We thank Conrad Brimacombe, Kate Britton, Keith Dobney, Mana Dembo, Marina Elliott, Ian Gilligan, Brian Hayden, Trenton Holliday, Vance Hutchinson, Steve Kuhn, Dana Lepofsky, Lee Lyman, Luseadra McKerracher, Kim Plomp, Bernard Wood, and an anonymous reviewer for their comments on earlier versions of this paper. Ian Gilligan’s comments in particular resulted in major changes to the interpretation of the results. MC is supported by the Social Sciences and Humanities Research Council of Canada, the Canada Research Chairs Program, the Canada Foundation for Innovation, the British Columbia Knowledge Development Fund, and Simon Fraser University. LT work on the study reported here was supported by the Social Sciences and Humanities Research Council of Canada (award no. 755-2011-0406). We are grateful to all these funding bodies. Last but not least, MC would like to express his gratitude to Jim O’Connell for his friendship and guidance over nearly 20 years. Thanks Jim. You’re the dog’s bollocks.
Resumo:
Arabia is a key area for the dispersal of anatomically modern humans (AMH, Homo sapiens) out of Africa. Given its modern hostile environment, the question of the timing of dispersal is also a question of climatic conditions. Fresh water and food were crucial factors facilitating AMH expansions into Arabia. By dating relict lake deposits, four periods of lake formation were identified: one during the early Holocene and three during the late Pleistocene centered ca. 80, ca. 100, and ca. 125 ka. Favorable environmental conditions during these periods allowed AMH to migrate across southern Arabia. Between ca. 75 and 10.5 ka, arid conditions prevailed and turned southern Arabia into a natural barrier for human dispersal. Thus, expansion of AMH through the southern corridor into Asia must have taken place before 75 ka, possibly in multiple dispersals.
Resumo:
The Khoisan people from Southern Africa maintained ancient lifestyles as hunter-gatherers or pastoralists up to modern times, though little else is known about their early history. Here we infer early demographic histories of modern humans using whole-genome sequences of five Khoisan individuals and one Bantu speaker. Comparison with a 420 K SNP data set from worldwide individuals demonstrates that two of the Khoisan genomes from the Ju/'hoansi population contain exclusive Khoisan ancestry. Coalescent analysis shows that the Khoisan and their ancestors have been the largest populations since their split with the non-Khoisan population similar to 100-150 kyr ago. In contrast, the ancestors of the non-Khoisan groups, including Bantu-speakers and non-Africans, experienced population declines after the split and lost more than half of their genetic diversity. Paleoclimate records indicate that the precipitation in southern Africa increased similar to 80-100 kyr ago while west-central Africa became drier. We hypothesize that these climate differences might be related to the divergent-ancient histories among human populations.
Resumo:
In the last few years, two paradigms underlying human evolution have crumbled. Modern humans have not totally replaced previous hominins without any admixture, and the expected signatures of adaptations to new environments are surprisingly lacking at the genomic level. Here we review current evidence about archaic admixture and lack of strong selective sweeps in humans. We underline the need to properly model differential admixture in various populations to correctly reconstruct past demography. We also stress the importance of taking into account the spatial dimension of human evolution, which proceeded by a series of range expansions that could have promoted both the introgression of archaic genes and background selection.
Resumo:
The study of life history evolution in hominids is crucial for the discernment of when and why humans have acquired our unique maturational pattern. Because the development of dentition is critically integrated into the life cycle in mammals, the determination of the time and pattern of dental development represents an appropriate method to infer changes in life history variables that occurred during hominid evolution. Here we present evidence derived from Lower Pleistocene human fossil remains recovered from the TD6 level (Aurora stratum) of the Gran Dolina site in the Sierra de Atapuerca, northern Spain. These hominids present a pattern of development similar to that of Homo sapiens, although some aspects (e.g., delayed M3 calcification) are not as derived as that of European populations and people of European origin. This evidence, taken together with the present knowledge of cranial capacity of these and other late Early Pleistocene hominids, supports the view that as early as 0.8 Ma at least one Homo species shared with modern humans a prolonged pattern of maturation.