897 resultados para Modelling and optimisation of photovoltaic systems
Resumo:
This paper, chosen as a best paper from the 2005 SAMOS Workshop on Computer Systems: describes the for the first time the major Abhainn project for automated system level design of embedded signal processing systems. In particular, this describes four key novelties: novel algorithm modelling techniques for DSP systems, automated implementation realisation, algorithm transformation for system optimisation and automated inter-processor communication. This is applied to two complex systems: a radar and sonar system. In both cases technology which allows non-experts to automatically create low-overhead, high performance embedded signal processing systems is exhibited.
Resumo:
The emergence of programmable logic devices as processing platforms for digital signal processing applications poses challenges concerning rapid implementation and high level optimization of algorithms on these platforms. This paper describes Abhainn, a rapid implementation methodology and toolsuite for translating an algorithmic expression of the system to a working implementation on a heterogeneous multiprocessor/field programmable gate array platform, or a standalone system on programmable chip solution. Two particular focuses for Abhainn are the automated but configurable realisation of inter-processor communuication fabrics, and the establishment of novel dedicated hardware component design methodologies allowing algorithm level transformation for system optimization. This paper outlines the approaches employed in both these particular instances.
Resumo:
Among the key challenges present in the modelling and optimisation of composite structures against impact is the computational expense involved in setting up accurate simulations of the impact event and then performing the iterations required to optimise the designs. It is of more interest to find good designs given the limitations of the resources and time available rather than the best possible design. In this paper, low cost but sufficiently accurate finite element (FE) models were generated in LS Dyna for several experimentally characterised materials by semi-automating the modelling process and using existing material models. These models were then used by an optimisation algorithm to generate new hybrid offspring, leading to minimum weight and/or cost designs from a selection of isotropic metals, polymers and orthotropic fibre-reinforced laminates that countered a specified impact threat. Experimental validation of the optimal designs thus identified was then successfully carried out using a single stage gas gun. With sufficient computational hardware, the techniques developed in this pilot study can further utilise fine meshes, equations of state and sophisticated material models, so that optimal hybrid systems can be identified from a wide range of materials, designs and threats.
Resumo:
The purpose of the work described here has been to seek methods of narrowing the present gap between currently realised heat pump performance and the theoretical limit. The single most important pre-requisite to this objective is the identification and quantitative assessment of the various non-idealities and degradative phenomena responsible for the present shortfall. The use of availability analysis has been introduced as a diagnostic tool, and applied to a few very simple, highly idealised Rankine cycle optimisation problems. From this work, it has been demonstrated that the scope for improvement through optimisation is small in comparison with the extensive potential for improvement by reducing the compressor's losses. A fully instrumented heat pump was assembled and extensively tested. This furnished performance data, and led to an improved understanding of the systems behaviour. From a very simple analysis of the resulting compressor performance data, confirmation of the compressor's low efficiency was obtained. In addition, in order to obtain experimental data concerning specific details of the heat pump's operation, several novel experiments were performed. The experimental work was concluded with a set of tests which attempted to obtain definitive performance data for a small set of discrete operating conditions. These tests included an investigation of the effect of two compressor modifications. The resulting performance data was analysed by a sophisticated calculation which used that measurements to quantify each dagradative phenomenon occurring in that compressor, and so indicate where the greatest potential for improvement lies. Finally, in the light of everything that was learnt, specific technical suggestions have been made, to reduce the losses associated with both the refrigerant circuit and the compressor.
Resumo:
Deterministic computer simulation of physical experiments is now a common technique in science and engineering. Often, physical experiments are too time consuming, expensive or impossible to conduct. Complex computer models or codes, rather than physical experiments lead to the study of computer experiments, which are used to investigate many scientific phenomena. A computer experiment consists of a number of runs of the computer code with different input choices. The Design and Analysis of Computer Experiments is a rapidly growing technique in statistical experimental design. This paper aims to discuss some practical issues when designing a computer simulation and/or experiments for manufacturing systems. A case study approach is reviewed and presented.
Resumo:
These lecture notes highlight some of the recent applications of multi-objective and multidisciplinary design optimisation in aeronautical design using the framework and methodology described in References 8, 23, 24 and in Part 1 and 2 of the notes. A summary of the methodology is described and the treatment of uncertainties in flight conditions parameters by the HAPEAs software and game strategies is introduced. Several test cases dealing with detailed design and computed with the software are presented and results discussed in section 4 of these notes.
Resumo:
Gaussian processes are gaining increasing popularity among the control community, in particular for the modelling of discrete time state space systems. However, it has not been clear how to incorporate model information, in the form of known state relationships, when using a Gaussian process as a predictive model. An obvious example of known prior information is position and velocity related states. Incorporation of such information would be beneficial both computationally and for faster dynamics learning. This paper introduces a method of achieving this, yielding faster dynamics learning and a reduction in computational effort from O(Dn2) to O((D - F)n2) in the prediction stage for a system with D states, F known state relationships and n observations. The effectiveness of the method is demonstrated through its inclusion in the PILCO learning algorithm with application to the swing-up and balance of a torque-limited pendulum and the balancing of a robotic unicycle in simulation. © 2012 IEEE.
Resumo:
In this PhD study, mathematical modelling and optimisation of granola production has been carried out. Granola is an aggregated food product used in breakfast cereals and cereal bars. It is a baked crispy food product typically incorporating oats, other cereals and nuts bound together with a binder, such as honey, water and oil, to form a structured unit aggregate. In this work, the design and operation of two parallel processes to produce aggregate granola products were incorporated: i) a high shear mixing granulation stage (in a designated granulator) followed by drying/toasting in an oven. ii) a continuous fluidised bed followed by drying/toasting in an oven. In addition, the particle breakage of granola during pneumatic conveying produced by both a high shear granulator (HSG) and fluidised bed granulator (FBG) process were examined. Products were pneumatically conveyed in a purpose built conveying rig designed to mimic product conveying and packaging. Three different conveying rig configurations were employed; a straight pipe, a rig consisting two 45° bends and one with 90° bend. It was observed that the least amount of breakage occurred in the straight pipe while the most breakage occurred at 90° bend pipe. Moreover, lower levels of breakage were observed in two 45° bend pipe than the 90° bend vi pipe configuration. In general, increasing the impact angle increases the degree of breakage. Additionally for the granules produced in the HSG, those produced at 300 rpm have the lowest breakage rates while the granules produced at 150 rpm have the highest breakage rates. This effect clearly the importance of shear history (during granule production) on breakage rates during subsequent processing. In terms of the FBG there was no single operating parameter that was deemed to have a significant effect on breakage during subsequent conveying. A population balance model was developed to analyse the particle breakage occurring during pneumatic conveying. The population balance equations that govern this breakage process are solved using discretization. The Markov chain method was used for the solution of PBEs for this process. This study found that increasing the air velocity (by increasing the air pressure to the rig), results in increased breakage among granola aggregates. Furthermore, the analysis carried out in this work provides that a greater degree of breakage of granola aggregates occur in line with an increase in bend angle.
Resumo:
A multivariable hyperstable robust adaptive decoupling control algorithm based on a neural network is presented for the control of nonlinear multivariable coupled systems with unknown parameters and structure. The Popov theorem is used in the design of the controller. The modelling errors, coupling action and other uncertainties of the system are identified on-line by a neural network. The identified results are taken as compensation signals such that the robust adaptive control of nonlinear systems is realised. Simulation results are given.
Resumo:
Communication signal processing applications often involve complex-valued (CV) functional representations for signals and systems. CV artificial neural networks have been studied theoretically and applied widely in nonlinear signal and data processing [1–11]. Note that most artificial neural networks cannot be automatically extended from the real-valued (RV) domain to the CV domain because the resulting model would in general violate Cauchy-Riemann conditions, and this means that the training algorithms become unusable. A number of analytic functions were introduced for the fully CV multilayer perceptrons (MLP) [4]. A fully CV radial basis function (RBF) nework was introduced in [8] for regression and classification applications. Alternatively, the problem can be avoided by using two RV artificial neural networks, one processing the real part and the other processing the imaginary part of the CV signal/system. A even more challenging problem is the inverse of a CV
Resumo:
Comunicação apresentada no CYTEF 2016/VIII Congresso Ibérico | VI Congresso Ibero-Americano de Ciências e Técnicas do Frio, 3-6 maio 2016, Coimbra, Portugal
Resumo:
A computer model has been developed to optimize the performance of a 50kWp photovoltaic system which supplies electrical energy to a dairy farm at Fota Island in Cork Harbour. Optimization of the system involves maximising the efficiency and increasing the performance and reliability of each hardware unit. The model accepts horizontal insolation, ambient temperature, wind speed, wind direction and load demand as inputs. An optimization program uses the computer model to simulate the optimum operating conditions. From this analysis, criteria are established which are used to improve the photovoltaic system operation. This thesis describes the model concepts, the model implementation and the model verification procedures used during development. It also describes the techniques which are used during system optimization. The software, which is written in FORTRAN, is structured in modular units to provide logical and efficient programming. These modular units may also be used in the modelling and optimization of other photovoltaic systems.
Resumo:
This paper describes the development of neural model-based control strategies for the optimisation of an industrial aluminium substrate disk grinding process. The grindstone removal rate varies considerably over a stone life and is a highly nonlinear function of process variables. Using historical grindstone performance data, a NARX-based neural network model is developed. This model is then used to implement a direct inverse controller and an internal model controller based on the process settings and previous removal rates. Preliminary plant investigations show that thickness defects can be reduced by 50% or more, compared to other schemes employed. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A stand-alone power system is an autonomous system that supplies electricity to the user load without being connected to the electric grid. This kind of decentralized system is frequently located in remote and inaccessible areas. It is essential for about one third of the world population which are living in developed or isolated regions and have no access to an electricity utility grid. The most people live in remote and rural areas, with low population density, lacking even the basic infrastructure. The utility grid extension to these locations is not a cost effective option and sometimes technically not feasible. The purpose of this thesis is the modelling and simulation of a stand-alone hybrid power system, referred to as “hydrogen Photovoltaic-Fuel Cell (PVFC) hybrid system”. It couples a photovoltaic generator (PV), an alkaline water electrolyser, a storage gas tank, a proton exchange membrane fuel cell (PEMFC), and power conditioning units (PCU) to give different system topologies. The system is intended to be an environmentally friendly solution since it tries maximising the use of a renewable energy source. Electricity is produced by a PV generator to meet the requirements of a user load. Whenever there is enough solar radiation, the user load can be powered totally by the PV electricity. During periods of low solar radiation, auxiliary electricity is required. An alkaline high pressure water electrolyser is powered by the excess energy from the PV generator to produce hydrogen and oxygen at a pressure of maximum 30bar. Gases are stored without compression for short- (hourly or daily) and long- (seasonal) term. A proton exchange membrane (PEM) fuel cell is used to keep the system’s reliability at the same level as for the conventional system while decreasing the environmental impact of the whole system. The PEM fuel cell consumes gases which are produced by an electrolyser to meet the user load demand when the PV generator energy is deficient, so that it works as an auxiliary generator. Power conditioning units are appropriate for the conversion and dispatch the energy between the components of the system. No batteries are used in this system since they represent the weakest when used in PV systems due to their need for sophisticated control and their short lifetime. The model library, ISET Alternative Power Library (ISET-APL), is designed by the Institute of Solar Energy supply Technology (ISET) and used for the simulation of the hybrid system. The physical, analytical and/or empirical equations of each component are programmed and implemented separately in this library for the simulation software program Simplorer by C++ language. The model parameters are derived from manufacturer’s performance data sheets or measurements obtained from literature. The identification and validation of the major hydrogen PVFC hybrid system component models are evaluated according to the measured data of the components, from the manufacturer’s data sheet or from actual system operation. Then, the overall system is simulated, at intervals of one hour each, by using solar radiation as the primary energy input and hydrogen as energy storage for one year operation. A comparison between different topologies, such as DC or AC coupled systems, is carried out on the basis of energy point of view at two locations with different geographical latitudes, in Kassel/Germany (Europe) and in Cairo/Egypt (North Africa). The main conclusion in this work is that the simulation method of the system study under different conditions could successfully be used to give good visualization and comparison between those topologies for the overall performance of the system. The operational performance of the system is not only depending on component efficiency but also on system design and consumption behaviour. The worst case of this system is the low efficiency of the storage subsystem made of the electrolyser, the gas storage tank, and the fuel cell as it is around 25-34% at Cairo and 29-37% at Kassel. Therefore, the research for this system should be concentrated in the subsystem components development especially the fuel cell.