871 resultados para Model-based approach
Resumo:
This paper discusses the integrated design of parallel manipulators, which exhibit varying dynamics. This characteristic affects the machine stability and performance. The design methodology consists of four main steps: (i) the system modeling using flexible multibody technique, (ii) the synthesis of reduced-order models suitable for control design, (iii) the systematic flexible model-based input signal design, and (iv) the evaluation of some possible machine designs. The novelty in this methodology is to take structural flexibilities into consideration during the input signal design; therefore, enhancing the standard design process which mainly considers rigid bodies dynamics. The potential of the proposed strategy is exploited for the design evaluation of a two degree-of-freedom high-speed parallel manipulator. The results are experimentally validated. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Motivation: This paper introduces the software EMMIX-GENE that has been developed for the specific purpose of a model-based approach to the clustering of microarray expression data, in particular, of tissue samples on a very large number of genes. The latter is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. A feasible approach is provided by first selecting a subset of the genes relevant for the clustering of the tissue samples by fitting mixtures of t distributions to rank the genes in order of increasing size of the likelihood ratio statistic for the test of one versus two components in the mixture model. The imposition of a threshold on the likelihood ratio statistic used in conjunction with a threshold on the size of a cluster allows the selection of a relevant set of genes. However, even this reduced set of genes will usually be too large for a normal mixture model to be fitted directly to the tissues, and so the use of mixtures of factor analyzers is exploited to reduce effectively the dimension of the feature space of genes. Results: The usefulness of the EMMIX-GENE approach for the clustering of tissue samples is demonstrated on two well-known data sets on colon and leukaemia tissues. For both data sets, relevant subsets of the genes are able to be selected that reveal interesting clusterings of the tissues that are either consistent with the external classification of the tissues or with background and biological knowledge of these sets.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica, Especialidade de Sistemas Digitais, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
The main objective pursued in this thesis targets the development and systematization of a methodology that allows addressing management problems in the dynamic operation of Urban Wastewater Systems. The proposed methodology will suggest operational strategies that can improve the overall performance of the system under certain problematic situations through a model-based approach. The proposed methodology has three main steps: The first step includes the characterization and modeling of the case-study, the definition of scenarios, the evaluation criteria and the operational settings that can be manipulated to improve the system’s performance. In the second step, Monte Carlo simulations are launched to evaluate how the system performs for a wide range of operational settings combinations, and a global sensitivity analysis is conducted to rank the most influential operational settings. Finally, the third step consists on a screening methodology applying a multi-criteria analysis to select the best combinations of operational settings.
Resumo:
We consider a fully model-based approach for the analysis of distance sampling data. Distance sampling has been widely used to estimate abundance (or density) of animals or plants in a spatially explicit study area. There is, however, no readily available method of making statistical inference on the relationships between abundance and environmental covariates. Spatial Poisson process likelihoods can be used to simultaneously estimate detection and intensity parameters by modeling distance sampling data as a thinned spatial point process. A model-based spatial approach to distance sampling data has three main benefits: it allows complex and opportunistic transect designs to be employed, it allows estimation of abundance in small subregions, and it provides a framework to assess the effects of habitat or experimental manipulation on density. We demonstrate the model-based methodology with a small simulation study and analysis of the Dubbo weed data set. In addition, a simple ad hoc method for handling overdispersion is also proposed. The simulation study showed that the model-based approach compared favorably to conventional distance sampling methods for abundance estimation. In addition, the overdispersion correction performed adequately when the number of transects was high. Analysis of the Dubbo data set indicated a transect effect on abundance via Akaike’s information criterion model selection. Further goodness-of-fit analysis, however, indicated some potential confounding of intensity with the detection function.
Resumo:
In this paper, a modeling technique for small-signal stability assessment of unbalanced power systems is presented. Since power distribution systems are inherently unbalanced, due to its lines and loads characteristics, and the penetration of distributed generation into these systems is increasing nowadays, such a tool is needed in order to ensure a secure and reliable operation of these systems. The main contribution of this paper is the development of a phasor-based model for the study of dynamic phenomena in unbalanced power systems. Using an assumption on the net torque of the generator, it is possible to precisely define an equilibrium point for the phasor model of the system, thus enabling its linearization around this point, and, consequently, its eigenvalue/eigenvector analysis for small-signal stability assessment. The modeling technique presented here was compared to the dynamic behavior observed in ATP simulations and the results show that, for the generator and controller models used, the proposed modeling approach is adequate and yields reliable and precise results.
Resumo:
The concept of competitiveness, for a long time considered as strictly connected to economic and financial performances, evolved, above all in recent years, toward new, wider interpretations disclosing its multidimensional nature. The shift to a multidimensional view of the phenomenon has excited an intense debate involving theoretical reflections on the features characterizing it, as well as methodological considerations on its assessment and measurement. The present research has a twofold objective: going in depth with the study of tangible and intangible aspect characterizing multidimensional competitive phenomena by assuming a micro-level point of view, and measuring competitiveness through a model-based approach. Specifically, we propose a non-parametric approach to Structural Equation Models techniques for the computation of multidimensional composite measures. Structural Equation Models tools will be used for the development of the empirical application on the italian case: a model based micro-level competitiveness indicator for the measurement of the phenomenon on a large sample of Italian small and medium enterprises will be constructed.
Resumo:
This article describes a knowledge-based method for generating multimedia descriptions that summarize the behavior of dynamic systems. We designed this method for users who monitor the behavior of a dynamic system with the help of sensor networks and make decisions according to prefixed management goals. Our method generates presentations using different modes such as text in natural language, 2D graphics and 3D animations. The method uses a qualitative representation of the dynamic system based on hierarchies of components and causal influences. The method includes an abstraction generator that uses the system representation to find and aggregate relevant data at an appropriate level of abstraction. In addition, the method includes a hierarchical planner to generate a presentation using a model with dis- course patterns. Our method provides an efficient and flexible solution to generate concise and adapted multimedia presentations that summarize thousands of time series. It is general to be adapted to differ- ent dynamic systems with acceptable knowledge acquisition effort by reusing and adapting intuitive rep- resentations. We validated our method and evaluated its practical utility by developing several models for an application that worked in continuous real time operation for more than 1 year, summarizing sen- sor data of a national hydrologic information system in Spain.
Resumo:
Las metodologías de desarrollo ágiles han sufrido un gran auge en entornos industriales durante los últimos años debido a la rapidez y fiabilidad de los procesos de desarrollo que proponen. La filosofía DevOps y específicamente las metodologías derivadas de ella como Continuous Delivery o Continuous Deployment promueven la gestión completamente automatizada del ciclo de vida de las aplicaciones, desde el código fuente a las aplicaciones ejecutándose en entornos de producción. La automatización se ve como un medio para producir procesos repetibles, fiables y rápidos. Sin embargo, no todas las partes de las metodologías Continuous están completamente automatizadas. En particular, la gestión de la configuración de los parámetros de ejecución es un problema que ha sido acrecentado por la elasticidad y escalabilidad que proporcionan las tecnologías de computación en la nube. La mayoría de las herramientas de despliegue actuales pueden automatizar el despliegue de la configuración de parámetros de ejecución, pero no ofrecen soporte a la hora de fijar esos parámetros o de validar los ficheros que despliegan, principalmente debido al gran abanico de opciones de configuración y el hecho de que el valor de muchos de esos parámetros es fijado en base a preferencias expresadas por el usuario. Esto hecho hace que pueda parecer que cualquier solución al problema debe estar ajustada a una aplicación específica en lugar de ofrecer una solución general. Con el objetivo de solucionar este problema, propongo un modelo de configuración que puede ser inferido a partir de instancias de configuración existentes y que puede reflejar las preferencias de los usuarios para ser usado para facilitar los procesos de configuración. El modelo de configuración puede ser usado como la base de un proceso de configuración interactivo capaz de guiar a un operador humano a través de la configuración de una aplicación para su despliegue en un entorno determinado o para detectar cambios de configuración automáticamente y producir una configuración válida que se ajuste a esos cambios. Además, el modelo de configuración debería ser gestionado como si se tratase de cualquier otro artefacto software y debería ser incorporado a las prácticas de gestión habituales. Por eso también propongo un modelo de gestión de servicios que incluya información relativa a la configuración de parámetros de ejecución y que además es capaz de describir y gestionar propuestas arquitectónicas actuales tales como los arquitecturas de microservicios. ABSTRACT Agile development methodologies have risen in popularity within the industry in recent years due to the speed and reliability of the processes they propose. The DevOps philosophy and specifically the methodologies derived from it such as Continuous Delivery and Continuous Deployment push for a totally automated management of the application lifecycle, from the source code to the software running in production environment. Automation in this regard is used as a means to produce repeatable, reliable and fast processes. However, not all parts of the Continuous methodologies are completely automatized. In particular, management of runtime parameter configuration is a problem that has increased its impact in deployment process due to the scalability and elasticity provided by cloud technologies. Most deployment tools nowadays can automate the deployment of runtime parameter configuration, but they offer no support for parameter setting o configuration validation, as the range of different configuration options and the fact that the value of many of those parameters is based on user preference seems to imply that any solution to the problem will have to be tailored to a specific application. With the aim to solve this problem I propose a configuration model that can be inferred from existing configurations and reflect user preferences in order to ease the configuration process. The configuration model can be used as the base of an interactive configuration process capable of guiding a human operator through the configuration of an application for its deployment in a specific environment or to automatically detect configuration changes and produce valid runtime parameter configurations that take into account those changes. Additionally, the configuration model should be managed as any other software artefact and should be incorporated into current management practices. I also propose a service management model that includes the configuration information and that is able to describe and manage current architectural practices such as the microservices architecture.
Resumo:
We present an approach for evaluating the efficacy of combination antitumor agent schedules that accounts for order and timing of drug administration. Our model-based approach compares in vivo tumor volume data over a time course and offers a quantitative definition for additivity of drug effects, relative to which synergism and antagonism are interpreted. We begin by fitting data from individual mice receiving at most one drug to a differential equation tumor growth/drug effect model and combine individual parameter estimates to obtain population statistics. Using two null hypotheses: (i) combination therapy is consistent with additivity or (ii) combination therapy is equivalent to treating with the more effective single agent alone, we compute predicted tumor growth trajectories and their distribution for combination treated animals. We illustrate this approach by comparing entire observed and expected tumor volume trajectories for a data set in which HER-2/neu-overexpressing MCF-7 human breast cancer xenografts are treated with a humanized, anti-HER-2 monoclonal antibody (rhuMAb HER-2), doxorubicin, or one of five proposed combination therapy schedules.
Resumo:
We consider the problem of assessing the number of clusters in a limited number of tissue samples containing gene expressions for possibly several thousands of genes. It is proposed to use a normal mixture model-based approach to the clustering of the tissue samples. One advantage of this approach is that the question on the number of clusters in the data can be formulated in terms of a test on the smallest number of components in the mixture model compatible with the data. This test can be carried out on the basis of the likelihood ratio test statistic, using resampling to assess its null distribution. The effectiveness of this approach is demonstrated on simulated data and on some microarray datasets, as considered previously in the bioinformatics literature. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
In microarray studies, the application of clustering techniques is often used to derive meaningful insights into the data. In the past, hierarchical methods have been the primary clustering tool employed to perform this task. The hierarchical algorithms have been mainly applied heuristically to these cluster analysis problems. Further, a major limitation of these methods is their inability to determine the number of clusters. Thus there is a need for a model-based approach to these. clustering problems. To this end, McLachlan et al. [7] developed a mixture model-based algorithm (EMMIX-GENE) for the clustering of tissue samples. To further investigate the EMMIX-GENE procedure as a model-based -approach, we present a case study involving the application of EMMIX-GENE to the breast cancer data as studied recently in van 't Veer et al. [10]. Our analysis considers the problem of clustering the tissue samples on the basis of the genes which is a non-standard problem because the number of genes greatly exceed the number of tissue samples. We demonstrate how EMMIX-GENE can be useful in reducing the initial set of genes down to a more computationally manageable size. The results from this analysis also emphasise the difficulty associated with the task of separating two tissue groups on the basis of a particular subset of genes. These results also shed light on why supervised methods have such a high misallocation error rate for the breast cancer data.
Resumo:
Model based vision allows use of prior knowledge of the shape and appearance of specific objects to be used in the interpretation of a visual scene; it provides a powerful and natural way to enforce the view consistency constraint. A model based vision system has been developed within ESPRIT VIEWS: P2152 which is able to classify and track moving objects (cars and other vehicles) in complex, cluttered traffic scenes. The fundamental basis of the method has been previously reported. This paper presents recent developments which have extended the scope of the system to include (i) multiple cameras, (ii) variable camera geometry, and (iii) articulated objects. All three enhancements have easily been accommodated within the original model-based approach
Resumo:
Abstract Background Over the last years, a number of researchers have investigated how to improve the reuse of crosscutting concerns. New possibilities have emerged with the advent of aspect-oriented programming, and many frameworks were designed considering the abstractions provided by this new paradigm. We call this type of framework Crosscutting Frameworks (CF), as it usually encapsulates a generic and abstract design of one crosscutting concern. However, most of the proposed CFs employ white-box strategies in their reuse process, requiring two mainly technical skills: (i) knowing syntax details of the programming language employed to build the framework and (ii) being aware of the architectural details of the CF and its internal nomenclature. Also, another problem is that the reuse process can only be initiated as soon as the development process reaches the implementation phase, preventing it from starting earlier. Method In order to solve these problems, we present in this paper a model-based approach for reusing CFs which shields application engineers from technical details, letting him/her concentrate on what the framework really needs from the application under development. To support our approach, two models are proposed: the Reuse Requirements Model (RRM) and the Reuse Model (RM). The former must be used to describe the framework structure and the later is in charge of supporting the reuse process. As soon as the application engineer has filled in the RM, the reuse code can be automatically generated. Results We also present here the result of two comparative experiments using two versions of a Persistence CF: the original one, whose reuse process is based on writing code, and the new one, which is model-based. The first experiment evaluated the productivity during the reuse process, and the second one evaluated the effort of maintaining applications developed with both CF versions. The results show the improvement of 97% in the productivity; however little difference was perceived regarding the effort for maintaining the required application. Conclusion By using the approach herein presented, it was possible to conclude the following: (i) it is possible to automate the instantiation of CFs, and (ii) the productivity of developers are improved as long as they use a model-based instantiation approach.