917 resultados para Model driven architecture
Resumo:
The specification of Quality of Service (QoS) constraints over software design requires measures that ensure such requirements are met by the delivered product. Achieving this goal is non-trivial, as it involves, at least, identifying how QoS constraint specifications should be checked at the runtime. In this paper we present an implementation of a Model Driven Architecture (MDA) based framework for the runtime monitoring of QoS properties. We incorporate the UML2 superstructure and the UML profile for Quality of Service to provide abstract descriptions of component-and-connector systems. We then define transformations that refine the UML2 models to conform with the Distributed Management Taskforce (DMTF) Common Information Model (CIM) (Distributed Management Task Force Inc. 2006), a schema standard for management and instrumentation of hardware and software. Finally, we provide a mapping the CIM metamodel to a .NET-based metamodel for implementation of the monitoring infrastructure utilising various .NET features including the Windows Management Instrumentation (WMI) interface.
Resumo:
Open Source (OS) community offers numerous eLearning platforms of both types: Learning Management Systems (LMS) and Learning Content Systems (LCS). General purpose OS intermediaries such as SourceForge, ObjectWeb, Apache or specialized intermediaries like CampusSource reduce the cost to locate such eLearning platforms. Still, it is impossible to directly compare the functionalities of those OS software products without performing detailed testing on each product. Some articles available from eLearning Wikipedia show comparisons between eLearning platforms which can help, but at the end they barely serve as documentation which are becoming out of date quickly [1]. The absence of integration activities between OS eLearning platforms - which are sometimes quite similar in terms of functionalities and implementation technologies - is sometimes critical since most of the OS projects possess small financial and human resources. This paper shows a possible solution for these barriers of OS eLearning platforms. We propose the Model Driven Architecture (MDA) concept to capture functionalities and to identify similarities between available OS eLearning platforms. This contribution evolved from a fruitful discussion at the 2nd CampusSource Developer Conference at the University of Muenster (27th August 2004).
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Informática
Resumo:
Genetic programming is known to provide good solutions for many problems like the evolution of network protocols and distributed algorithms. In such cases it is most likely a hardwired module of a design framework that assists the engineer to optimize specific aspects of the system to be developed. It provides its results in a fixed format through an internal interface. In this paper we show how the utility of genetic programming can be increased remarkably by isolating it as a component and integrating it into the model-driven software development process. Our genetic programming framework produces XMI-encoded UML models that can easily be loaded into widely available modeling tools which in turn posses code generation as well as additional analysis and test capabilities. We use the evolution of a distributed election algorithm as an example to illustrate how genetic programming can be combined with model-driven development. This example clearly illustrates the advantages of our approach – the generation of source code in different programming languages.
Resumo:
Questa tesi si occupa degli aspetti di usabilità nell'interazione degli utenti con le applicazioni, usando le tecniche di generazione automatica della Model-Driven Architecture. Viene prodotto un generatore di applicazioni model-driven, basato su un modello di progettazione Goal-Oriented, con risultati apprezzabili nel fornire all'utente un'interazione dinamica con l'applicazione prodotta.
Resumo:
Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.
Resumo:
Wireless sensor networks (WSNs) differ from conventional distributed systems in many aspects. The resource limitation of sensor nodes, the ad-hoc communication and topology of the network, coupled with an unpredictable deployment environment are difficult non-functional constraints that must be carefully taken into account when developing software systems for a WSN. Thus, more research needs to be done on designing, implementing and maintaining software for WSNs. This thesis aims to contribute to research being done in this area by presenting an approach to WSN application development that will improve the reusability, flexibility, and maintainability of the software. Firstly, we present a programming model and software architecture aimed at describing WSN applications, independently of the underlying operating system and hardware. The proposed architecture is described and realized using the Model-Driven Architecture (MDA) standard in order to achieve satisfactory levels of encapsulation and abstraction when programming sensor nodes. Besides, we study different non-functional constrains of WSN application and propose two approaches to optimize the application to satisfy these constrains. A real prototype framework was built to demonstrate the developed solutions in the thesis. The framework implemented the programming model and the multi-layered software architecture as components. A graphical interface, code generation components and supporting tools were also included to help developers design, implement, optimize, and test the WSN software. Finally, we evaluate and critically assess the proposed concepts. Two case studies are provided to support the evaluation. The first case study, a framework evaluation, is designed to assess the ease at which novice and intermediate users can develop correct and power efficient WSN applications, the portability level achieved by developing applications at a high-level of abstraction, and the estimated overhead due to usage of the framework in terms of the footprint and executable code size of the application. In the second case study, we discuss the design, implementation and optimization of a real-world application named TempSense, where a sensor network is used to monitor the temperature within an area.
Resumo:
The majority of the organizations store their historical business information in data warehouses which are queried to make strategic decisions by using online analytical processing (OLAP) tools. This information has to be correctly assured against unauthorized accesses, but nevertheless there are a great amount of legacy OLAP applications that have been developed without considering security aspects or these have been incorporated once the system was implemented. This work defines a reverse engineering process that allows us to obtain the conceptual model corresponding to a legacy OLAP application, and also analyses and represents the security aspects that could have established. This process has been aligned with a model-driven architecture for developing secure OLAP applications by defining the transformations needed to automatically apply it. Once the conceptual model has been extracted, it can be easily modified and improved with security, and automatically transformed to generate the new implementation.
Resumo:
En un mercado de educación superior cada vez más competitivo, la colaboración entre universidades es una efectiva estrategia para acceder al mercado global. El desarrollo de titulaciones conjuntas es un importante mecanismo para fortalecer las colaboraciones académicas y diversificar los conocimientos. Las titulaciones conjuntas están siendo cada vez más implementadas en las universidades de todo el mundo. En Europa, el proceso de Bolonia y el programa Erasmus, están fomentado el reconocimiento de titulaciones conjuntas y dobles y promoviendo la colaboración entre las instituciones académicas. En el imparable proceso de la globalización y convergencia educativa, el uso de sistemas de e-learning para soportar cursos tanto semipresencial como online es una tendencia en crecimiento. Dado que los sistemas de e-learning soportan una amplia variedad de cursos, es necesario encontrar una solución adecuada que permita a las universidades soportar y gestionar las titulaciones conjuntas a través de sus sistemas de e-learning en conformidad con los acuerdos de colaboración establecidos por las universidades participantes. Esta tesis doctoral abordará las siguientes preguntas de investigación: 1. ¿Qué factores deben tenerse en cuenta en la implementación y gestión de titulaciones conjuntas? 2. ¿Cómo pueden los sistemas actuales de e-learning soportar el desarrollo de titulaciones conjuntas? 3. ¿Qué otros servicios y sistemas necesitan ser adaptados por las universidades interesadas en participar en una titulación conjunta a través de sus sistemas de e-learning? La implementación de titulaciones conjuntas a través de sistemas de e-learning es compleja e implica retos técnicos, administrativos, culturales, financieros, jurídicos y de seguridad. Esta tesis doctoral propone una serie de contribuciones que pueden ayudar a resolver algunos de los retos identificados. En primer lugar se ha elaborado un modelo conceptual que incluye la información del contexto de las titulaciones conjuntas que es relevante para la implementación de estas titulaciones en los sistemas de e-learning. Después de definir el modelo conceptual, se ha propuesto una arquitectura basada en políticas para la implementación de titulaciones interinstitucionales a través de sistemas de e-learning de acuerdo a los términos estipulados en los acuerdos de colaboración que son firmados por las universidades participantes. El autor se ha centrado en el componente de gestión de flujos de trabajo de esta arquitectura. Por último y con el fin de permitir la interoperabilidad de repositorios de objetos educativos, los componentes básicos a implementar han sido identificados y validados. El uso de servicios multimedia en educación es una tendencia creciente, proporcionando servicios de e-learning que permiten mejorar la comunicación y la interacción entre profesores y alumnos. Dentro de estos servicios, nos hemos centrado en el uso de la videoconferencia y la grabación de clases como servicios adecuados para el desarrollo de cursos impartidos en escenarios de educación colaborativos. Las contribuciones han sido validadas en proyectos de investigación de ámbito nacional y europeo en los que el autor ha participado. Abstract In an increasingly competitive higher education market, collaboration between universities is an effective strategy for gaining access to the global market. The development of joint degrees is an important mechanism for strengthening academic research collaborations and diversifying knowledge. Joint degrees are becoming increasingly implemented in universities around the world. In Europe, the Bologna process and the Erasmus programme have encouraged both the global recognition of joint and double degrees and promoted close collaboration between academic institutions. In the unstoppable process of globalization and educational convergence, the use of e-learning systems for supporting both blended and online courses is becoming a growing trend. Since e-learning systems covers a wide range of courses, it becomes necessary to find a suitable solution that enables universities to support and manage joint degrees through their e-learning systems in accordance with the collaboration agreements established by the universities involved. This dissertation will address the following research questions: 1. What factors need to be considered in the implementation and management of joint degrees? 2. How can the current e-learning systems support the development of joint degrees? 3. What other services and systems need to be adapted by universities interested in participating in a joint degree through their e-learning systems? The implementation of joint degrees using e-learning systems is complex and involves technical, administrative, security, cultural, financial and legal challenges. This dissertation proposes a series of contributions to help solve some of the identified challenges. One of the cornerstones of this proposal is a conceptual model of all the relevant issues related to the support of joint degrees by means of e-learning systems. After defining the conceptual model, this dissertation proposes a policy-driven architecture for implementing inter-institutional degree collaborations through e-learning systems as stipulated by a collaboration agreement signed by two universities. The author has focused on the workflow management component of this architecture. Finally, the building blocks for achieving interoperability of learning object repositories have been identified and validated. The use of multimedia services in education is a growing trend, providing rich e-learning services that improve the communication and interaction between teachers and students. Within these e-learning services, we have focused on the use of videoconferencing and lecture recording as the best-suited services to support collaborative learning scenarios. The contributions have been validated within national and European research projects that the author has been involved in.
Resumo:
The Software Engineering (SE) community has historically focused on working with models to represent functionality and persistence, pushing interaction modelling into the background, which has been covered by the Human Computer Interaction (HCI) community. Recently, adequately modelling interaction, and specifically usability, is being considered as a key factor for success in user acceptance, making the integration of the SE and HCI communities more necessary. If we focus on the Model-Driven Development (MDD) paradigm, we notice that there is a lack of proposals to deal with usability features from the very first steps of software development process. In general, usability features are manually implemented once the code has been generated from models. This contradicts the MDD paradigm, which claims that all the analysts? effort must be focused on building models, and the code generation is relegated to model to code transformations. Moreover, usability features related to functionality may involve important changes in the system architecture if they are not considered from the early steps. We state that these usability features related to functionality can be represented abstractly in a conceptual model, and their implementation can be carried out automatically.
Resumo:
To our knowledge, no current software development methodology explicitly describes how to transit from the analysis model to the software architecture of the application. This paper presents a method to derive the software architecture of a system from its analysis model. To do this, we are going to use MDA. Both the analysis model and the architectural model are PIMs described with UML 2. The model type mapping designed consists of several rules (expressed using OCL and natural language) that, when applied to the analysis artifacts, generate the software architecture of the application. Specifically the rules act on elements of the UML 2 metamodel (metamodel mapping). We have developed a tool (using Smalltalk) that permits the automatic application of these rules to an analysis model defined in RoseTM to generate the application architecture expressed in the architectural style C2.
Resumo:
Nowadays, data mining is based on low-level specications of the employed techniques typically bounded to a specic analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Here, we propose a model-driven approach based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (via data-warehousing technology) and the analysis models for data mining (tailored to a specic platform). Thus, analysts can concentrate on the analysis problem via conceptual data-mining models instead of low-level programming tasks related to the underlying-platform technical details. These tasks are now entrusted to the model-transformations scaffolding.
Resumo:
Data mining is one of the most important analysis techniques to automatically extract knowledge from large amount of data. Nowadays, data mining is based on low-level specifications of the employed techniques typically bounded to a specific analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Bearing in mind this situation, we propose a model-driven approach which is based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (that is deployed via data-warehousing technology) and the analysis models for data mining (tailored to a specific platform). Thus, analysts can concentrate on understanding the analysis problem via conceptual data-mining models instead of wasting efforts on low-level programming tasks related to the underlying-platform technical details. These time consuming tasks are now entrusted to the model-transformations scaffolding. The feasibility of our approach is shown by means of a hypothetical data-mining scenario where a time series analysis is required.