927 resultados para Model combination
Resumo:
In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaptation may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences. ©2010 IEEE.
Resumo:
We describe a method for evaluating an ensemble of predictive models given a sample of observations comprising the model predictions and the outcome event measured with error. Our formulation allows us to simultaneously estimate measurement error parameters, true outcome — aka the gold standard — and a relative weighting of the predictive scores. We describe conditions necessary to estimate the gold standard and for these estimates to be calibrated and detail how our approach is related to, but distinct from, standard model combination techniques. We apply our approach to data from a study to evaluate a collection of BRCA1/BRCA2 gene mutation prediction scores. In this example, genotype is measured with error by one or more genetic assays. We estimate true genotype for each individual in the dataset, operating characteristics of the commonly used genotyping procedures and a relative weighting of the scores. Finally, we compare the scores against the gold standard genotype and find that Mendelian scores are, on average, the more refined and better calibrated of those considered and that the comparison is sensitive to measurement error in the gold standard.
Resumo:
Model combination wire ropes with different covering materials were prepared and worked out specification for the prototype. A table model hand operated wire rope twisting machine was also developed for this. Prototype combination wire rope was twisted in collaboration with M/s South India Wire Ropes Ltd., Alwaye. Specification details, properties and field performance of the prototype studied are reported.
Resumo:
In this paper, we develop a novel constrained recursive least squares algorithm for adaptively combining a set of given multiple models. With data available in an online fashion, the linear combination coefficients of submodels are adapted via the proposed algorithm.We propose to minimize the mean square error with a forgetting factor, and apply the sum to one constraint to the combination parameters. Moreover an l1-norm constraint to the combination parameters is also applied with the aim to achieve sparsity of multiple models so that only a subset of models may be selected into the final model. Then a weighted l2-norm is applied as an approximation to the l1-norm term. As such at each time step, a closed solution of the model combination parameters is available. The contribution of this paper is to derive the proposed constrained recursive least squares algorithm that is computational efficient by exploiting matrix theory. The effectiveness of the approach has been demonstrated using both simulated and real time series examples.
Resumo:
In this dissertation, different ways of combining neural predictive models or neural-based forecasts are discussed. The proposed approaches consider mostly Gaussian radial basis function networks, which can be efficiently identified and estimated through recursive/adaptive methods. Two different ways of combining are explored to get a final estimate – model mixing and model synthesis –, with the aim of obtaining improvements both in terms of efficiency and effectiveness. In the context of model mixing, the usual framework for linearly combining estimates from different models is extended, to deal with the case where the forecast errors from those models are correlated. In the context of model synthesis, and to address the problems raised by heavily nonstationary time series, we propose hybrid dynamic models for more advanced time series forecasting, composed of a dynamic trend regressive model (or, even, a dynamic harmonic regressive model), and a Gaussian radial basis function network. Additionally, using the model mixing procedure, two approaches for decision-making from forecasting models are discussed and compared: either inferring decisions from combined predictive estimates, or combining prescriptive solutions derived from different forecasting models. Finally, the application of some of the models and methods proposed previously is illustrated with two case studies, based on time series from finance and from tourism.