830 resultados para Modal Logics. Paranormal Logics. Fuzzy Logics
Resumo:
I thank to my advisor, João Marcos, for the intellectual support and patience that devoted me along graduate years. With his friendship, his ability to see problems of the better point of view and his love in to make Logic, he became a great inspiration for me. I thank to my committee members: Claudia Nalon, Elaine Pimentel and Benjamin Bedregal. These make a rigorous lecture of my work and give me valuable suggestions to make it better. I am grateful to the Post-Graduate Program in Systems and Computation that accepted me as student and provided to me the propitious environment to develop my research. I thank also to the CAPES for a 21 months fellowship. Thanks to my research group, LoLITA (Logic, Language, Information, Theory and Applications). In this group I have the opportunity to make some friends. Someone of them I knew in my early classes, they are: Sanderson, Haniel and Carol Blasio. Others I knew during the course, among them I’d like to cite: Patrick, Claudio, Flaulles and Ronildo. I thank to Severino Linhares and Maria Linhares who gently hosted me at your home in my first months in Natal. This couple jointly with my colleagues of student flat Fernado, Donátila and Aline are my nuclear family in Natal. I thank my fiancée Luclécia for her precious a ective support and to understand my absence at home during my master. I thank also my parents Manoel and Zenilda, my siblings Alexandre, Paulo and Paula.Without their confidence and encouragement I wouldn’t achieve success in this journey. If you want the hits, be prepared for the misses Carl Yastrzemski
Resumo:
A new semantics with the finite model property is provided and used to establish decidability for Gödel modal logics based on (crisp or fuzzy) Kripke frames combined locally with Gödel logic. A similar methodology is also used to establish decidability, and indeed co-NP-completeness for a Gödel S5 logic that coincides with the one-variable fragment of first-order Gödel logic.
Resumo:
Inspired by the recent work on approximations of classical logic, we present a method that approximates several modal logics in a modular way. Our starting point is the limitation of the n-degree of introspection that is allowed, thus generating modal n-logics. The semantics for n-logics is presented, in which formulas are evaluated with respect to paths, and not possible worlds. A tableau-based proof system is presented, n-SST, and soundness and completeness is shown for the approximation of modal logics K, T, D, S4 and S5. (c) 2008 Published by Elsevier B.V.