716 resultados para Mobile cloud computing
Resumo:
The ability of cloud computing to provide almost unlimited storage, backup and recovery, and quick deployment contributes to its widespread attention and implementation. Cloud computing has also become an attractive choice for mobile users as well. Due to limited features of mobile devices such as power scarcity and inability to cater computationintensive tasks, selected computation needs to be outsourced to the resourceful cloud servers. However, there are many challenges which need to be addressed in computation offloading for mobile cloud computing such as communication cost, connectivity maintenance and incurred latency. This paper presents taxonomy of the computation offloading approaches which aim to address the challenges. The taxonomy provides guidelines to identify research scopes in computation offloading for mobile cloud computing. We also outline directions and anticipated trends for future research.
Resumo:
Due to the advancement in mobile devices and wireless networks mobile cloud computing, which combines mobile computing and cloud computing has gained momentum since 2009. The characteristics of mobile devices and wireless network makes the implementation of mobile cloud computing more complicated than for fixed clouds. This section lists some of the major issues in Mobile Cloud Computing. One of the key issues in mobile cloud computing is the end to end delay in servicing a request. Data caching is one of the techniques widely used in wired and wireless networks to improve data access efficiency. In this paper we explore the possibility of a cooperative caching approach to enhance data access efficiency in mobile cloud computing. The proposed approach is based on cloudlets, one of the architecture designed for mobile cloud computing.
Resumo:
Lo scopo dell'elaborato di tesi è l'analisi, progettazione e sviluppo di un prototipo di una infrastruttura cloud in grado di gestire un grande flusso di eventi generati da dispositivi mobili. Questi utilizzano informazioni come la posizione assunta e il valore dei sensori locali di cui possono essere equipaggiati al fine di realizzare il proprio funzionamento. Le informazioni così ottenute vengono trasmesse in modo da ottenere una rete di device in grado di acquisire autonomamente informazioni sull'ambiente ed auto-organizzarsi. La costruzione di tale struttura si colloca in un più ampio ambito di ricerca che punta a integrare metodi per la comunicazione ravvicinata con il cloud al fine di permettere la comunicazione tra dispositivi vicini in qualsiasi situazione che si potrebbe presentare in una situazione reale. A definire le specifiche della infrastruttura e quindi a impersonare il ruolo di committente è stato il relatore, Prof. Mirko Viroli, mentre lo sviluppo è stato portato avanti da me e dal correlatore, Ing. Pietro Brunetti. Visti gli studi precedenti riguardanti il cloud computing nell'area dei sistemi complessi distribuiti, Brunetti ha dato il maggiore contributo nella fase di analisi del problema e di progettazione mentre la parte riguardante la effettiva gestione degli eventi, le computazioni in cloud e lo storage dei dati è stata maggiormente affrontata da me. In particolare mi sono occupato dello studio e della implementazione del backend computazionale, basato sulla tecnologia Apache Storm, della componente di storage dei dati, basata su Neo4j, e della costruzione di un pannello di visualizzazione basato su AJAX e Linkurious. A questo va aggiunto lo studio su Apache Kafka, utilizzato come tecnologia per realizzare la comunicazione asincrona ad alte performance tra le componenti. Si è reso necessario costruire un simulatore al fine di condurre i test per verificare il funzionamento della infrastruttura prototipale e per saggiarne l'effettiva scalabilità, considerato il potenziale numero di dispositivi da sostenere che può andare dalle decine alle migliaia. La sfida più importante riguarda la gestione della vicinanza tra dispositivi e la possibilità di scalare la computazione su più macchine. Per questo motivo è stato necessario far uso di tecnologie per l'esecuzione delle operazioni di memorizzazione, calcolo e trasmissione dei dati in grado di essere eseguite su un cluster e garantire una accettabile fault-tolerancy. Da questo punto di vista i lavori che hanno portato alla costruzione della infrastruttura sono risultati essere un'ottima occasione per prendere familiarità con tecnologie prima sconosciute. Quasi tutte le tecnologie utilizzate fanno parte dell'ecosistema Apache e, come esposto all'interno della tesi, stanno ricevendo una grande attenzione da importanti realtà proprio in questo periodo, specialmente Apache Storm e Kafka. Il software prodotto per la costruzione della infrastruttura è completamente sviluppato in Java a cui si aggiunge la componente web di visualizzazione sviluppata in Javascript.
Resumo:
Mobile devices are now capable of supporting a wide range of applications, many of which demand an ever increasing computational power. To this end, mobile cloud computing (MCC) has been proposed to address the limited computation power, memory, storage, and energy of such devices. An important challenge in MCC is to guarantee seamless discovery of services. To this end, this thesis proposes an architecture that provides user-transparent and low-latency service discovery, as well as automated service selection. Experimental results on a real cloud computing testbed demonstrated that the proposed work outperforms state of-the-art approaches by achieving extremely low discovery delay.
Resumo:
The development of applications as well as the services for mobile systems faces a varied range of devices with very heterogeneous capabilities whose response times are difficult to predict. The research described in this work aims to respond to this issue by developing a computational model that formalizes the problem and that defines adjusting computing methods. The described proposal combines imprecise computing strategies with cloud computing paradigms in order to provide flexible implementation frameworks for embedded or mobile devices. As a result, the imprecise computation scheduling method on the workload of the embedded system is the solution to move computing to the cloud according to the priority and response time of the tasks to be executed and hereby be able to meet productivity and quality of desired services. A technique to estimate network delays and to schedule more accurately tasks is illustrated in this paper. An application example in which this technique is experimented in running contexts with heterogeneous work loading for checking the validity of the proposed model is described.
Resumo:
This thesis presents the formal definition of a novel Mobile Cloud Computing (MCC) extension of the Networked Autonomic Machine (NAM) framework, a general-purpose conceptual tool which describes large-scale distributed autonomic systems. The introduction of autonomic policies in the MCC paradigm has proved to be an effective technique to increase the robustness and flexibility of MCC systems. In particular, autonomic policies based on continuous resource and connectivity monitoring help automate context-aware decisions for computation offloading. We have also provided NAM with a formalization in terms of a transformational operational semantics in order to fill the gap between its existing Java implementation NAM4J and its conceptual definition. Moreover, we have extended NAM4J by adding several components with the purpose of managing large scale autonomic distributed environments. In particular, the middleware allows for the implementation of peer-to-peer (P2P) networks of NAM nodes. Moreover, NAM mobility actions have been implemented to enable the migration of code, execution state and data. Within NAM4J, we have designed and developed a component, denoted as context bus, which is particularly useful in collaborative applications in that, if replicated on each peer, it instantiates a virtual shared channel allowing nodes to notify and get notified about context events. Regarding the autonomic policies management, we have provided NAM4J with a rule engine, whose purpose is to allow a system to autonomously determine when offloading is convenient. We have also provided NAM4J with trust and reputation management mechanisms to make the middleware suitable for applications in which such aspects are of great interest. To this purpose, we have designed and implemented a distributed framework, denoted as DARTSense, where no central server is required, as reputation values are stored and updated by participants in a subjective fashion. We have also investigated the literature regarding MCC systems. The analysis pointed out that all MCC models focus on mobile devices, and consider the Cloud as a system with unlimited resources. To contribute in filling this gap, we defined a modeling and simulation framework for the design and analysis of MCC systems, encompassing both their sides. We have also implemented a modular and reusable simulator of the model. We have applied the NAM principles to two different application scenarios. First, we have defined a hybrid P2P/cloud approach where components and protocols are autonomically configured according to specific target goals, such as cost-effectiveness, reliability and availability. Merging P2P and cloud paradigms brings together the advantages of both: high availability, provided by the Cloud presence, and low cost, by exploiting inexpensive peers resources. As an example, we have shown how the proposed approach can be used to design NAM-based collaborative storage systems based on an autonomic policy to decide how to distribute data chunks among peers and Cloud, according to cost minimization and data availability goals. As a second application, we have defined an autonomic architecture for decentralized urban participatory sensing (UPS) which bridges sensor networks and mobile systems to improve effectiveness and efficiency. The developed application allows users to retrieve and publish different types of sensed information by using the features provided by NAM4J's context bus. Trust and reputation is managed through the application of DARTSense mechanisms. Also, the application includes an autonomic policy that detects areas characterized by few contributors, and tries to recruit new providers by migrating code necessary to sensing, through NAM mobility actions.
Resumo:
The increasing penetration rate of feature rich mobile devices such as smartphones and tablets in the global population has resulted in a large number of applications and services being created or modified to support mobile devices. Mobile cloud computing is a proposed paradigm to address the resource scarcity of mobile devices in the face of demand for more computing intensive tasks. Several approaches have been proposed to confront the challenges of mobile cloud computing, but none has used the user experience as the primary focus point. In this paper we evaluate these approaches in respect of the user experience, propose what future research directions in this area require to provide for this crucial aspect, and introduce our own solution.
Resumo:
Nearly one billion smart mobile devices are now used for a growing number of tasks, such as browsing the web and accessing online services. In many communities, such devices are becoming the platform of choice for tasks traditionally carried out on a personal computer. However, despite the advances, these devices are still lacking in resources compared to their traditional desktop counterparts. Mobile cloud computing is seen as a new paradigm that can address the resource shortcomings in these devices with the plentiful computing resources of the cloud. This can enable the mobile device to be used for a large range of new applications hosted in the cloud that are too resource demanding to run locally. Bringing these two technologies together presents various difficulties. In this paper, we examine the advantages of the mobile cloud and the new approaches to applications it enables. We present our own solution to create a positive user experience for such applications and describe how it enables these applications.
Resumo:
The mobile cloud computing paradigm can offer relevant and useful services to the users of smart mobile devices. Such public services already exist on the web and in cloud deployments, by implementing common web service standards. However, these services are described by mark-up languages, such as XML, that cannot be comprehended by non-specialists. Furthermore, the lack of common interfaces for related services makes discovery and consumption difficult for both users and software. The problem of service description, discovery, and consumption for the mobile cloud must be addressed to allow users to benefit from these services on mobile devices. This paper introduces our work on a mobile cloud service discovery solution, which is utilised by our mobile cloud middleware, Context Aware Mobile Cloud Services (CAMCS). The aim of our approach is to remove complex mark-up languages from the description and discovery process. By means of the Cloud Personal Assistant (CPA) assigned to each user of CAMCS, relevant mobile cloud services can be discovered and consumed easily by the end user from the mobile device. We present the discovery process, the architecture of our own service registry, and service description structure. CAMCS allows services to be used from the mobile device through a user's CPA, by means of user defined tasks. We present the task model of the CPA enabled by our solution, including automatic tasks, which can perform work for the user without an explicit request.
Resumo:
Mobile Cloud Computing promises to overcome the physical limitations of mobile devices by executing demanding mobile applications on cloud infrastructure. In practice, implementing this paradigm is difficult; network disconnection often occurs, bandwidth may be limited, and a large power draw is required from the battery, resulting in a poor user experience. This thesis presents a mobile cloud middleware solution, Context Aware Mobile Cloud Services (CAMCS), which provides cloudbased services to mobile devices, in a disconnected fashion. An integrated user experience is delivered by designing for anticipated network disconnection, and low data transfer requirements. CAMCS achieves this by means of the Cloud Personal Assistant (CPA); each user of CAMCS is assigned their own CPA, which can complete user-assigned tasks, received as descriptions from the mobile device, by using existing cloud services. Service execution is personalised to the user's situation with contextual data, and task execution results are stored with the CPA until the user can connect with his/her mobile device to obtain the results. Requirements for an integrated user experience are outlined, along with the design and implementation of CAMCS. The operation of CAMCS and CPAs with cloud-based services is presented, specifically in terms of service description, discovery, and task execution. The use of contextual awareness to personalise service discovery and service consumption to the user's situation is also presented. Resource management by CAMCS is also studied, and compared with existing solutions. Additional application models that can be provided by CAMCS are also presented. Evaluation is performed with CAMCS deployed on the Amazon EC2 cloud. The resource usage of the CAMCS Client, running on Android-based mobile devices, is also evaluated. A user study with volunteers using CAMCS on their own mobile devices is also presented. Results show that CAMCS meets the requirements outlined for an integrated user experience.
Resumo:
Current trends in broadband mobile networks are addressed towards the placement of different capabilities at the edge of the mobile network in a centralised way. On one hand, the split of the eNB between baseband processing units and remote radio headers makes it possible to process some of the protocols in centralised premises, likely with virtualised resources. On the other hand, mobile edge computing makes use of processing and storage capabilities close to the air interface in order to deploy optimised services with minimum delay. The confluence of both trends is a hot topic in the definition of future 5G networks. The full centralisation of both technologies in cloud data centres imposes stringent requirements to the fronthaul connections in terms of throughput and latency. Therefore, all those cells with limited network access would not be able to offer these types of services. This paper proposes a solution for these cases, based on the placement of processing and storage capabilities close to the remote units, which is especially well suited for the deployment of clusters of small cells. The proposed cloud-enabled small cells include a highly efficient microserver with a limited set of virtualised resources offered to the cluster of small cells. As a result, a light data centre is created and commonly used for deploying centralised eNB and mobile edge computing functionalities. The paper covers the proposed architecture, with special focus on the integration of both aspects, and possible scenarios of application.
Resumo:
One of the most challenging problems in mobile broadband networks is how to assign the available radio resources among the different mobile users. Traditionally, research proposals are either speci c to some type of traffic or deal with computationally intensive algorithms aimed at optimizing the delivery of general purpose traffic. Consequently, commercial networks do not incorporate these mechanisms due to the limited hardware resources at the mobile edge. Emerging 5G architectures introduce cloud computing principles to add flexible computational resources to Radio Access Networks. This paper makes use of the Mobile Edge Computing concepts to introduce a new element, denoted as Mobile Edge Scheduler, aimed at minimizing the mean delay of general traffic flows in the LTE downlink. This element runs close to the eNodeB element and implements a novel flow-aware and channel-aware scheduling policy in order to accommodate the transmissions to the available channel quality of end users.
Resumo:
The mobile cloud computing model promises to address the resource limitations of mobile devices, but effectively implementing this model is difficult. Previous work on mobile cloud computing has required the user to have a continuous, high-quality connection to the cloud infrastructure. This is undesirable and possibly infeasible, as the energy required on the mobile device to maintain a connection, and transfer sizeable amounts of data is large; the bandwidth tends to be quite variable, and low on cellular networks. The cloud deployment itself needs to efficiently allocate scalable resources to the user as well. In this paper, we formulate the best practices for efficiently managing the resources required for the mobile cloud model, namely energy, bandwidth and cloud computing resources. These practices can be realised with our mobile cloud middleware project, featuring the Cloud Personal Assistant (CPA). We compare this with the other approaches in the area, to highlight the importance of minimising the usage of these resources, and therefore ensure successful adoption of the model by end users. Based on results from experiments performed with mobile devices, we develop a no-overhead decision model for task and data offloading to the CPA of a user, which provides efficient management of mobile cloud resources.
Resumo:
L’obiettivo del progetto di tesi svolto è quello di realizzare un servizio di livello middleware dedicato ai dispositivi mobili che sia in grado di fornire il supporto per l’offloading di codice verso una infrastruttura cloud. In particolare il progetto si concentra sulla migrazione di codice verso macchine virtuali dedicate al singolo utente. Il sistema operativo delle VMs è lo stesso utilizzato dal device mobile. Come i precedenti lavori sul computation offloading, il progetto di tesi deve garantire migliori performance in termini di tempo di esecuzione e utilizzo della batteria del dispositivo. In particolare l’obiettivo più ampio è quello di adattare il principio di computation offloading a un contesto di sistemi distribuiti mobili, migliorando non solo le performance del singolo device, ma l’esecuzione stessa dell’applicazione distribuita. Questo viene fatto tramite una gestione dinamica delle decisioni di offloading basata, non solo, sullo stato del device, ma anche sulla volontà e/o sullo stato degli altri utenti appartenenti allo stesso gruppo. Per esempio, un primo utente potrebbe influenzare le decisioni degli altri membri del gruppo specificando una determinata richiesta, come alta qualità delle informazioni, risposta rapida o basata su altre informazioni di alto livello. Il sistema fornisce ai programmatori un semplice strumento di definizione per poter creare nuove policy personalizzate e, quindi, specificare nuove regole di offloading. Per rendere il progetto accessibile ad un più ampio numero di sviluppatori gli strumenti forniti sono semplici e non richiedono specifiche conoscenze sulla tecnologia. Il sistema è stato poi testato per verificare le sue performance in termini di mecchanismi di offloading semplici. Successivamente, esso è stato anche sottoposto a dei test per verificare che la selezione di differenti policy, definite dal programmatore, portasse realmente a una ottimizzazione del parametro designato.
Resumo:
Virtualisation of cellular networks can be seen as a way to significantly reduce the complexity of processes, required nowadays to provide reliable cellular networks. The Future Communication Architecture for Mobile Cloud Services: Mobile Cloud Networking (MCN) is a EU FP7 Large-scale Integrating Project (IP) funded by the European Commission that is focusing on cloud computing concepts to achieve virtualisation of cellular networks. It aims at the development of a fully cloud-based mobile communication and application platform, or more specifically, it aims to investigate, implement and evaluate the technological foundations for the mobile communication system of Long Term Evolution (LTE), based on Mobile Network plus Decentralized Computing plus Smart Storage offered as one atomic service: On-Demand, Elastic and Pay-As-You-Go. This paper provides a brief overview of the MCN project and discusses the challenges that need to be solved.