8 resultados para MnWO4
Resumo:
Novel three-dimensional (3D) flowerlike MnWO4 micro/nanocomposite structure has been successfully synthesized for the first time. The synthesized products were systematically studied by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) and photoluminescence (PL) spectra. It is found that both reaction time and temperature have significant effects on the morphology of the products.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Manganese tungstate (MnWO4) nanorods were prepared at room temperature by the co-precipitation method and synthesized after processing in a microwave-hydrothermal (MH) system at 140 degrees C for 6-96 min. These nanorods were structurally characterized by X-ray diffraction (XRD), Rietveld refinements and Fourier transform (FT)-Raman spectroscopy. The growth direction, shape and average size distribution of nanorods were observed by means of transmission electron microscopy (TEM) and high resolution TEM (HR-TEM). The optical properties of the nanorods were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. XRD patterns, Rietveld refinement data and FT-Raman spectroscopy indicate that the MnWO4 precipitate is not a single phase structure while the nanorods synthesized by MH processing have a wolframite-type monoclinic structure without deleterious phases. FT-Raman spectra exhibited the presence of 17 Raman-active modes from 50 to 1,000 cm(-1). TEM and HR-TEM micrographs indicated that the nanorods are aggregated due to surface energy by Van der Waals forces and grow along the [100] direction. UV-vis absorption measurements confirmed non-linear values for the optical band gap (from 3.2 to 2.72 eV), which increased as the MH processing time increased. The structural characterizations indicated that the presence of defects in the MnWO4 precipitate promotes a significant contribution to maximum PL emission, while MnWO4 nanorods obtained by MH processing decrease the PL emission due to the reduction of defects in the lattice.
Resumo:
In this communication, we report the effect of different surfactants [cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and sodium bis(2-ethylhexyl)sulfosuccinate (AOT)] on the shape, growth and photoluminescence (PL) behavior of manganese tungstate (MnWO4) crystals synthesized by the microwave-hydrothermal (MH) method at 413 K for 45 min. These crystals were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), ultraviolet-visible (UV-vis) absorption spectroscopy and PL measurements. XRD patterns proved that these crystals have a monoclinic structure. FE-SEM images showed that MnWO4 crystals exhibit different shapes and growth mechanisms depending on the surfactant employed. The CTAB cationic surfactant promotes the hindrance of small nuclei that leads to the formation of flake-like nanocrystals, while SDS and AOT anionic surfactants promote a growth of crystals to plate-like and leaf-like crystals due to considerable size effect of counter-ions (RSO4- and RSO2O-) and an increase in Na+ ion remnants. UV-vis absorption spectroscopy revealed different optical band gap values due to modifications in the shape, surface and crystal size. Finally, the effect of surfactants on the crystal shapes and average crystal size distribution causing changes in the PL behavior of MnWO4 crystals was explained. (C) 2011 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
Resumo:
This communication is a report of our initial research to obtain iron tungstate (FeWO4) nanocrystals by the microwave-hydrothermal method at 170 degrees C for 45 min. X-ray diffraction patterns showed that the FeWO4 nanocrystals prepared with polyethylene glycol-200 have a partial preferential orientation in the (011) plane in relation to other nanocrystals prepared with sodium bis(2-ethylhexyl) sulfosuccinate and water. Rietveld refinement data indicates that all nanocrystals are monophasic with wolframite-type monoclinic structures and exhibit different distortions on octahedral [FeO6]/[WO6] clusters. High resolution transmission electron microcopy revealed an oriented attachment mechanism for the growth of aggregated FeWO4 nanocrystals. Finally, we observed that the photoluminescence properties of these nanocrystals are affected by partial preferential orientation in the (011) plane and distortions on [FeO6]/[WO6] clusters.
Resumo:
In this thesis the critical dynamics of several magnetoelectric compounds at their phase transition were examined. Mostly measurements of the dielectric properties in the frequency range of below 1 Hz up to 5 GHz were employed to evaluate the critical exponents for both magnetic field and temperature-dependent measurements. Most of the materials that are part of this work show anomalous behavior, especially at very low temperatures where quantum fluctuations are of the order of or even dominate those induced thermally. This anomalous behavior manifests in different forms. In Dy2Ti2O7 we demonstrate the existence of electric dipoles on magnetic monopoles. Here the dynamics at the critical endpoint located at 0.36K and in a magnetic field of 1T parallel to the [111] direction are of special interest. At this critical endpoint the expected critical slowing down of the dynamics could not only not be observed but instead the opposite, critical speeding-up by several orders of magnitude, could be demonstrated. Furthermore, we show that the phase diagram of Dy2Ti2O7 in this field direction can be reproduced solely from the dynamical properties, for example the resonance frequency of the observed relaxation that is connected to the monopole movement. Away from this point of the phase diagram the dynamics are slowing-down with reduction of temperature as one would expect. Additional measurements on Y2Ti2O7, a structurally identical but non-magnetic material, show only slowing down with reduction of temperature and no additional features. A possible explanation for the observed critical speeding-up is a coherent movement of magnetic monopoles close to the critical field that increases the resonance frequency by reducing the damping of the process. LiCuVO4 on the other hand behaves normally at its phase transition as long as the temperature is higher than 0.4 K. In this temperature regime the dynamics show critical slowing-down analogous to classical ferroelectric materials. This analogy extends also towards higher frequencies where the permittivity displays a ‘dispersion’ minimum that is temperature-dependent but of the order of 2 GHz. Below 0.4K the observed behavior changes drastically. Here we found no longer relaxational behavior but instead an excitation with very low energy. This low energy excitation was predicted by theory and is caused by nearly gapless soliton excitations within the 1D Cu2+ chains of LiCuVO4. Finally, in TbMnO3 the dynamics of the phase transition into the multiferroic phase was observed at roughly 27 K, a much higher temperature compared to the other materials. Here the expected critical slowing-down was observed, even though in low-frequency measurements this transition into the ferroelectric phase is overshadowed by the so-called c-axis relaxation. Therefore, only frequencies above 1MHz could be used to determine the critical exponents for both temperatureand magnetic-field-dependent measurements. This was done for both the peak frequency as well as the relaxation strength. In TbMnO3 an electromagnetic soft-mode with small optical weight causes the observed fluctuations, similar to the case of multiferroic MnWO4.
Resumo:
In this thesis, the magnetic properties of four transition-metal oxides are presented. Their multiferroic and magnetoelectric phases have been investigated by means of different neutron scattering techniques. The materials TbMnO3 and MnWO4 belong to the group of spin-induced multiferroics. Their ferroelectric polarization can be explained by the inverse DzyaloshinskiiMoriya interaction. Another common feature of both materials is the presence of subsequent magnetic transitions from a spin-density wave to a spin spiral. The features of the phase transitions have been studied in both materials and it could be shown that diffuse magnetic scattering from the spin spiral is present even in the ordered spin-density wave phase. The excitation spectrum in the multiferroic phase of TbMnO3 was investigated in detail and a comprehensive dataset was obtained using time-of-flight spectroscopy. A spin-wave model could be obtained which can quantitatively describe the full dispersion. Furthermore, the polarization of the zone-center excitations could be derived which fit well to data from inelastic neutron spectroscopy and infrared spectroscopy. With the combination of spherical neutron polarimetry and a poling of the sample by an electric field, it was possible to observe the chiral magnetic component of the magnetic excitations in TbMnO3 and MnWO4. The spin-wave model for TbMnO3 obtained in this thesis is able to correctly describe the dispersion of this component. The double tungstate NaFe(WO4)2 is isostructural to the multiferroic MnWO4 and develops a complex magnetic phase diagram. By the use of neutron diffraction techniques, the zero-field structure and high-field structures in magnetic field applied along the b-axis could be determined. The data reveal a direct transition into an incommensurate spin-spiral structure. The value of the incommensurability is driven by anharmonic modulations and shows strong hysteresis effects. The static and dynamic properties in the magnetoelectric spin-glass phase of Ni0.42Mn0.58TiO3 were studied in detail. The spin-glass phase is composed of short-ranged MnTiO3 and NiTiO3-type order. The antiferromagnetic domains could be controlled by crossed magnetic and electric fields, which was visualized using spherical neutron polarimetry. A comprehensive dataset of the magnetic excitations in the spin-glass phase was collected. The dataset revealed correlations in the hexagonal plane which are only weakly coupled along the c-axis. The excitation spectra could be simulated by taking into account the MnTiO3-type order.