971 resultados para Mitochondrial function


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differences between the respiratory chain of the fungus Paracoccidioides brasiliensis and its mammalian host are reported. Respiration, membrane potential, and oxidative phosphorylation in mitochondria from P. brasiliensis spheroplasts were evaluated in situ, and the presence of a complete (Complex I-V) functional respiratory chain was demonstrated. In succinate-energized mitochondria, ADP induced a transition from resting to phosphorylating respiration. The presence of an alternative NADH-ubiquinone oxidoreductase was indicated by: (i) the ability to oxidize exogenous NADH and (ii) the lack of sensitivity to rotenone and presence of sensitivity to flavone. Malate/NAD(+)-supported respiration suggested the presence of either a mitochondrial pyridine transporter or a glyoxylate pathway contributing to NADH and/or succinate production. Partial sensitivity of NADH/succinate-supported respiration to antimycin A and cyanide, as well as sensitivity to benzohydroxamic acids, suggested the presence of an alternative oxidase in the yeast form of the fungus. An increase in activity and gene expression of the alternative NADH dehydrogenase throughout the yeast`s exponential growth phase was observed. This increase was coupled with a decrease in Complex I activity and gene expression of its subunit 6. These results support the existence of alternative respiratory chain pathways in addition to Complex I, as well as the utilization of NADH-linked substrates by P. brasiliensis. These specific components of the respiratory chain could be useful for further research and development of pharmacological agents against the fungus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to analyze hepatic mitochondrial function in patients with familial amyloidotic polyneuropathy (FAP) undergoing cadaveric donor orthotopic liver transplantation. From February `2005 to May 2007, eight patients with FAP, ranging in age from 34 to 41 years and with Model for End-Stage Liver Disease scores ranging from 24 to 29. Underwent orthotopic transplantation using a liver from a deceased donor by the piggyback method. Immediately before beginning the recipient hepatectomy in a patient with FAP, a biopsy was obtained for analysis of mitochondrial function (FAP group). The control group consisted of 15 patients undergoing hepatic surgery to treat small tumors of the liver. Mitochondrial respiration was determined on the basis of oxygen consumption by energized mitochondria using a polarographic method. The membrane potential of the mitochondria was determined spectrofluorometrically. Data were analyzed statistically by the Mann-Whitney test, with the level of significance set at 5%. State 3 and 4 values, respiratory control ratio, and membrane potential were 47 +/- 8 versus 28 +/- 10 natoms O/min/mg protein (P <.05); 14 +/- 3 vs 17 +/- 7 nat.O/min/ mg.prot.mit. (P >.05); 3.6+/- .5 vs 1.7 +/- 0.7 (P <.05); and 135 +/- 5.2 vs 135 +/- 6 mV (P >.05) for control versus FAP patients, respectively, demonstrating a decreased energy status of the liver in FAP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specific cellular functions, such as proliferation, survival, growth, or senescence, require a particular adaptive metabolic response, which is fine tuned by members of the cell cycle regulators families. Currently, proteins such as cyclins, CDKs, or E2Fs are being studied in the context of cell proliferation and survival, cell signaling, cell cycle regulation, and cancer. We show in this review that cellular, animal and molecular studies provided enough evidence to prove that these factors play, in addition, crucial roles in the control of mitochondrial function; finally resulting in a dual proliferative and metabolic response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Fatigability increases while the capacity for mitochondrial energy production tends to decrease significantly with age. Thus, diminished mitochondrial function may contribute to higher levels of fatigability in older adults. METHODS: The relationship between fatigability and skeletal muscle mitochondrial function was examined in 30 participants aged 78.5 ± 5.0 years (47% female, 93% white), with a body mass index of 25.9 ± 2.7 kg/m(2) and usual gait-speed of 1.2 ± 0.2 m/s. Fatigability was defined using rating of perceived exertion (6-20 point Borg scale) after a 5-minute treadmill walk at 0.72 m/s. Phosphocreatine recovery in the quadriceps was measured using (31)P magnetic resonance spectroscopy and images of the quadriceps were captured to calculate quadriceps volume. ATPmax (mM ATP/s) and oxidative capacity of the quadriceps (ATPmax·Quadriceps volume) were calculated. Peak aerobic capacity (VO2peak) was measured using a modified Balke protocol. RESULTS: ATPmax·Quadriceps volume was associated with VO2peak and was 162.61mM ATP·mL/s lower (p = .03) in those with high (rating of perceived exertion ≥10) versus low (rating of perceived exertion ≤9) fatigability. Participants with high fatigability required a significantly higher proportion of VO2peak to walk at 0.72 m/s compared with those with low fatigability (58.7 ± 19.4% vs 44.9 ± 13.2%, p < .05). After adjustment for age and sex, higher ATPmax was associated with lower odds of having high fatigability (odds ratio: 0.34, 95% CI: 0.11-1.01, p = .05). CONCLUSIONS: Lower capacity for oxidative phosphorylation in the quadriceps, perhaps by contributing to lower VO2peak, is associated with higher fatigability in older adults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biostimulating effect of laser radiation has been observed in many areas of Medicine. However, there are still several questions to be answered, among them the importance of light coherence in the stimulatory process. In the present study, we used light-emitting diodes (LED) to promote the stimulation of liver regeneration after partial hepatectomy in rats. Fourteen male Wistar rats weighing 200-250 g were submitted to partial hepatectomy (70%) followed by LED light irradiation (630 nm) of the remaining part of the liver at two doses, i.e., 10 (N = 7) and 140 (N = 7) J/cm². A group irradiated with laser, 590 nm (N = 7, 15 J/cm²) was performed for the study of proliferating cell nuclear antigen-labeling index. Data are reported as mean ± SEM. Statistical comparisons of the groups were performed by analysis of variance for parametric measurements followed by the Bonferroni post-test, with the level of significance set at P < 0.05. Respiratory mitochondrial activity was increased in the irradiated groups (states 3 and 4; P < 0.05), with better results for the group exposed to the lower LED dose (10 J/cm²). The proliferating cell nuclear antigen-labeling index, by immunohistochemical staining, was similar for both LED-exposed groups (P > 0.05) and higher than for the control group (P < 0.05). The cell proliferation index obtained with LED and laser were similar (P > 0.05). In conclusion, the present results suggest that LED irradiation promotes biological stimulatory effects during the early stage of liver regeneration and that LED is as effective as laser light, independent of the coherence, divergence and cromaticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to investigate the effects of eccentric training on the activity of mitochondrial respiratory chain enzymes, oxidative stress, muscle damage, and inflammation of skeletal muscle. Eighteen male mice (CF1) weighing 30-35 g were randomly divided into 3 groups (N = 6): untrained, trained eccentric running (16°; TER), and trained running (0°) (TR), and were submitted to an 8-week training program. TER increased muscle oxidative capacity (succinate dehydrogenase and complexes I and II) in a manner similar to TR, and TER did not decrease oxidative damage (xylenol and creatine phosphate) but increased antioxidant enzyme activity (superoxide dismutase and catalase) similar to TR. Muscle damage (creatine kinase) and inflammation (myeloperoxidase) were not reduced by TER. In conclusion, we suggest that TER improves mitochondrial function but does not reduce oxidative stress, muscle damage, or inflammation induced by eccentric contractions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The timing and mechanisms of protection by hyperbaric oxygenation (HBO) in hypoxic-ischemic brain damage (HIBD) have only been partially elucidated. We monitored the effect of HBO on the mitochondrial function of neuronal cells in the cerebral cortex of neonatal rats after HIBD. Neonatal Sprague-Dawley rats (total of 360 of both genders) were randomly divided into normal control, HIBD, and HIBD+HBO groups. The HBO treatment began immediately after hypoxia-ischemia (HI) and continued once a day for 7 consecutive days. Animals were euthanized 0, 2, 4, 6, and 12 h post-HI to monitor the changes in mitochondrial membrane potential (ΔΨm) occurring soon after a single dose of HBO treatment, as well as 2, 3, 4, 5, 6, and 7 days post-HI to study ΔΨm changes after a series of HBO treatments. Fluctuations in ΔΨm were observed in the ipsilateral cortex in both HIBD and HIBD+HBO groups. Within 2 to 12 h after HI insult, the ΔΨm of the HIBD and HIBD+HBO groups recovered to some extent. A secondary drop in ΔΨm was observed in both groups during the 1-4 days post-HI period, but was more severe in the HIBD+HBO group. There was a secondary recovery of ΔΨm observed in the HIBD+HBO group, but not in the HIBD group, during the 5-7 days period after HI insult. HBO therapy may not lead to improvement of neural cell mitochondrial function in the cerebral cortex in the early stage post-HI, but may improve it in the sub-acute stage post-HI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondria have an important role in cell metabolism, being the major site of ATP production via oxidative phosphorylation (OXPHOS). Accumulation of mtDNA mutations have been linked to the development of respiratory dysfunction, apoptosis, and aging. Base excision repair (BER) is the major and the only certain repair pathway existing in mitochondria that is in responsible for removing and repairing various base modifications as well as abasic sites (AP sites). In this research, Saccharomyces cerevisiae (S. cerevisiae) BER gene knockout strains, including 3 single DNA glycosylase gene knockout strains and Ap endonuclease (Apn 1 p) knockout strain were used to examine the importance of this DNA repair pathway to the maintenance of respiratory function. Here, I show that individual DNA glycosylases are nonessential in maintenance of normal function in yeast mitochondria, corroborating with previous research in mammalian experimental models. The yeast strain lacking Apn 1 p activity exhibits respiratory deficits, including inefficient and significantly low intracellular ATP level, which maybe due to partial uncoupling of OXPHOS. Growth of this yeast strain on respiratory medium is inhibited, but no evidence was found for increased ROS level in Apn 1 p mitochondria. This strain also shows an increased cell size, and this observation combined with an uncoupled OXPHOS may indicate a premature aging in the Apnlp knockout strain, but more evidence is needed to support this hypothesis. However, the BER is necessary for maintenance of mitochondrial function in respiring S.cerevisiae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNE EXPOSITION NÉONATALE À L’OXYGÈNE MÈNE À DES MODIFICATIONS DE LA FONCTION MITOCHONDRIALE CHEZ LE RAT ADULTE Introduction: L’exposition à l’oxygène (O2) des ratons nouveau-nés a des conséquences à l’âge adulte dont une hypertension artérielle (HTA), une dysfonction vasculaire, une néphropénie et des indices de stress oxydant. En considérant que les reins sont encore en développement actif lors des premiers jours après la naissance chez les rats, jouent un rôle clé dans le développement de l’hypertension et qu’une dysfonction mitochondriale est associé à une augmentation du stress oxydant, nous postulons que les conditions délétères néonatales peuvent avoir un impact significatif au niveau rénal sur la modulation de l’expression de protéines clés du fonctionnement mitochondrial et une production mitochondriale excessive d’espèces réactives de l’ O2. Méthodes: Des ratons Sprague-Dawley sont exposés à 80% d’O2 (H) ou 21% O2 (Ctrl) du 3e au 10e jr de vie. En considérant que plusieurs organes des rats sont encore en développement actif à la naissance, ces rongeurs sont un modèle reconnu pour étudier les complications d’une hyperoxie néonatale, comme celles liées à une naissance prématurée chez l’homme. À 4 et à 16 semaines, les reins sont prélevés et les mitochondries sont extraites suivant une méthode d’extraction standard, avec un tampon contenant du sucrose 0.32 M et différentes centrifugations. L’expression des protéines mitochondriales a été mesurée par Western blot, tandis que la production d’ H202 et les activités des enzymes clés du cycle de Krebs ont été évaluées par spectrophotométrie. Les résultats sont exprimés par la moyenne ± SD. Résultats: Les rats mâles H de 16 semaines (n=6) présentent une activité de citrate synthase (considéré standard interne de l’expression protéique et de l’abondance mitochondriales) augmentée (12.4 ± 8.4 vs 4.1 ± 0.5 μmole/mL/min), une diminution de l’activité d’aconitase (enzyme sensible au redox mitochondrial) (0.11 ± 0.05 vs 0.20 ± 0.04 μmoles/min/mg mitochondrie), ainsi qu’une augmentation dans la production de H202 (7.0 ± 1.3 vs 5.4 ± 0.8 ρmoles/mg protéines mitochondriales) comparativement au groupe Ctrl (n=6 mâles et 4 femelles). Le groupe H (vs Ctrl) présente également une diminution dans l’expression de peroxiredoxin-3 (Prx3) (H 0.61±0.06 vs. Ctrl 0.78±0.02 unité relative, -23%; p<0.05), une protéine impliquée dans l’élimination d’ H202, de l’expression du cytochrome C oxidase (Complexe IV) (H 1.02±0.04 vs. Ctrl 1.20±0.02 unité relative, -15%; p<0.05), une protéine de la chaine de respiration mitochondriale, tandis que l’expression de la protéine de découplage (uncoupling protein)-2 (UCP2), impliquée dans la dispersion du gradient proton, est significativement augmentée (H 1.05±0.02 vs. Ctrl 0.90±0.03 unité relative, +17%; p<0.05). Les femelles H (n=6) (vs Ctrl, n=6) de 16 semaines démontrent une augmentation significative de l’activité de l’aconitase (0.33±0.03 vs 0.17±0.02 μmoles/min/mg mitochondrie), de l’expression de l’ATP synthase sous unité β (H 0.73±0.02 vs. Ctrl 0.59±0.02 unité relative, +25%; p<0.05) et de l’expression de MnSOD (H 0.89±0.02 vs. Ctrl 0.74±0.03 unité relative, +20%; p<0.05) (superoxide dismutase mitochondriale, important antioxidant), tandis que l’expression de Prx3 est significativement réduite (H 1.1±0.07 vs. Ctrl 0.85±0.01 unité relative, -24%; p<0.05). À 4 semaines, les mâles H (vs Ctrl) présentent une augmentation significative de l’expression de Prx3 (H 0.72±0.03 vs. Ctrl 0.56±0.04 unité relative, +31%; p<0.05) et les femelles présentent une augmentation significative de l’expression d’UCP2 (H 1.22±0.05 vs. Ctrl 1.03±0.04 unité relative, +18%; p<0.05) et de l’expression de MnSOD (H 1.36±0.01 vs. 1.19±0.06 unité relative, +14%; p<0.05). Conclusions: Une exposition néonatale à l’O2 chez le rat adulte mène à des indices de dysfonction mitochondriale dans les reins adultes, associée à une augmentation dans la production d’espèces réactives de l’oxygène, suggérant que ces modifications mitochondriales pourraient jouer un rôle dans l’hypertension artérielle et d’un stress oxydant, et par conséquent, être un facteur possible dans la progression vers des maladies cardiovasculaires. Mots-clés: Mitochondries, Reins, Hypertension, Oxygène, Stress Oxydant, Programmation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The endocannabinoid system (ECS) is a construct based on the discovery of receptors that are modulated by the plant compound tetrahydrocannabinol and the subsequent identification of a family of nascent ligands, the 'endocannabinoids'. The function of the ECS is thus defined by modulation of these receptors-in particular, by two of the best-described ligands (2-arachidonyl glycerol and anandamide), and by their metabolic pathways. Endocannabinoids are released by cell stress, and promote both cell survival and death according to concentration. The ECS appears to shift the immune system towards a type 2 response, while maintaining a positive energy balance and reducing anxiety. It may therefore be important in resolution of injury and inflammation. Data suggest that the ECS could potentially modulate mitochondrial function by several different pathways; this may help explain its actions in the central nervous system. Dose-related control of mitochondrial function could therefore provide an insight into its role in health and disease, and why it might have its own pathology, and possibly, new therapeutic directions.