999 resultados para Mississippi River


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brown shrimp (Farfantepenaeus aztecus) are abundant along the Louisiana coast, a coastline that is heavily influenced by one of the world’s largest rivers, the Mississippi River. Stable carbon, nitrogen, and sulfur (CNS) isotopes of shrimp and their proventriculus (stomach) contents were assayed to trace riverine support of estuarine-dependent brown shrimp. Extensive inshore and of fshore collections were made in the Louisiana coastal zone during 1999–2006 to document shrimp movement patterns across the bay and shelf region. Results showed an unexpectedly strong role for nursery areas in the river delta in supporting the offshore fishery, with about 46% of immigrants to offshore regions arriving from riverine marshes. Strong river influences also were evident offshore, where cluster analysis of combined CNS isotope data showed three regional station groups related to river inputs. Two nearer-river mid-shelf station groups showed isotope values indicating river fertilization and productivity responses in the benthic shrimp food web, and a deeper offshore station group to the south and west showed much less river inf luence. At several mid-shelf stations where hypoxia is common, shrimp were anomalously 15N depleted versus their diets, and this d15N difference or mismatch may be useful in monitoring shrimp movement responses to hypoxia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overall goal of this assessment was to evaluate the effects of nutrient-source reductions that may be implemented in the Mississippi River Basin (MRB) to reduce the problem of low oxygen conditions (hypoxia) in the nearshore Gulf of Mexico. Such source reductions would affect the quality of surface waters—streams, rivers, and reservoirs—in the drainage basin itself, as well as nearshore Gulf waters. The task group’s work was divided into addressing the effects of nutrient-source reductions on: (1) surface waters in the MRB and (2) hypoxia in the Gulf of Mexico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissolved organic carbon (DOC), stable carbon isotopic (delta(13)C) compositions of DOC and particulate organic carbon (POC), and elemental C/N ratios of POC were measured for samples collected from the lower Mississippi and Atchafalaya rivers and adjacent coastal waters in the northern Gulf of Mexico during the low flow season in June 2000 and high flow season in April 2001. These isotopic and C/N results combined with DOC measurements were used to assess the sources and transport of terrestrial organic matter from the Mississippi and Atchafalaya rivers to the coastal region in the northern Gulf of Mexico. delta(13)C values of both POC (-23.8parts per thousand to -26.8parts per thousand) and DOC (-25.0parts per thousand to -29.0parts per thousand) carried by the two rivers were more depleted than the values measured for the samples collected in the offshore waters. Strong seasonal variations in delta(13)C distributions were observed for both POC and DOC in the surface waters of the region. Fresh water discharge and horizontal mixing played important roles in the distribution and transport of terrestrial POC and DOC offshore. Our results indicate that both POC and DOC exhibited non-conservative behavior during the mixing especially in the mid-salinity range. Based on a simple two end-member mixing model, the comparison of the measured DOC-delta(13)C with the calculated conservative isotopic mixing curve indicated that there was a significant in situ production of marine-derived DOC in the mid- to high-salinity waters consistent with our in situ chlorophyll-a measurements. Our DOC-delta(13)C data suggest that a removal of terrestrial DOC mainly occurred in the high-salinity (>25) waters during the mixing. Our study indicates that the mid- to high- (10-30) salinity range was the most dynamic zone for organic carbon transport and cycling in the Mississippi River estuary. Variability in isotopic and elemental compositions along with variability in DOC and POC concentrations suggest that autochthonous production, bacterial utilization, and photo-oxidation could all play important roles in regulating and removing terrestrial DOC in the northern Gulf of Mexico and further study of these individual processes is warranted. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface distributions of dissolved silicic acid, chlorophyll and diatom abundance were measured in the plume of the Mississippi River and adjacent waters during spring (late April and early May 1993) and summer (July 1992). In spring, the time of maximum river flow, there was an intense diatom bloom with a mean diatom abundance of 1.5 x 10**7 cells/l, more than an order of magnitude higher than in summer. Mixing curves of silicic acid concentration ([Si(OH)4]) versus salinity indicate that biological uptake within the river plume removed >99% of the Si(OH)4 supplied by the river in spring and 80 to 95% in summer. In spring [Si(OH)4] was occasionally depleted to <0.2 µM-among the lowest values ever reported from the ocean-with extensive depletion to >=0.5 µM over the shelf. In summer [Si(OH)4] was less severely depleted; the lowest measured was 0.93 µM and all others were >=2.4 µM. 30Si kinetic experiments were performed during both spring and summer to measure the degree to which the rate of Si uptake by the natural diatom assemblages was limited in situ by substrate availability. In spring the dependence of the specific uptake rate (V) on extracellular [Si(OH)4] conformed much more closely to the Michaelis-Menten saturation function than has been observed in past studies. Strong dependence of V on [Si(OH)4] was observed throughout the most Si(OH)4-depleted (<0.5 µM) region, where V was limited to 12 to 45% of the diatom assemblages' maximum uptake rate (Vmax). Half-saturation concentrations for Si uptake (Ks) averaged 0.85 uM (range = 0.48 to 1.71; n = 7) in spring, with the lowest values equal to the lowest previously reported for natural diatom assemblages. There was only 1 station in summer where V was limited by [Si(OH)4], and at that station Ks was 5.3 µM-quite high in comparison with previous studies. At stations where V was limited by [Si(OH)4], in both spring and summer, Chaetoceros spp. were numerically dominant; where there was no Si limitation other diatoms, usually Skeletonema costatum, dominated. The data thus indicate strong Si limitation in spring, with diatom assemblages well adapted to low [Si(OH)4], but little or no Si limitation in summer. Historical data suggest that coastal Si(OH)4 depletion and Si limitation may be recent phenomena in the northern Gulf of Mexico, resulting from increasing [NO3-] and decreasing [Si(OH)4] in the Mississippi River during the past 30 to 50 yr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Survey of the Mississippi River : made under the direction of the Mississippi River Commission : chart no. 76, projected from a trigonometrical survey made by the U.S. Coast Survey in 1874. It was published by the Mississippi River Commission ca. 1895. Scale 1:10,000. Covers the City of New Orleans and adjacent portions of Jefferson and St. Bernard Parishes. This layer is image 1 of 4 total images of the four sheet source map, representing the northeast portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Louisiana State Plane Coordinate System, South NAD83 (in Feet) (Fipszone 1702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, railroads, canals, drainage, vegetation/ground cover, land ownership in outlying areas, selected public, private, and industrial buildings, parks, cemeteries, Parish boundaries, ferry routes and more. Relief shown by contours. Detailed depths of the Mississippi River shown with soundings and dates of survey, and survey control points. River banks and bottom soil types shown. Includes index chart, list of authorities, and notes. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Survey of the Mississippi River : made under the direction of the Mississippi River Commission : chart no. 76, projected from a trigonometrical survey made by the U.S. Coast survey in 1874. It was published by the Mississippi River Commission ca. 1895. Scale 1:10,000. Covers the City of New Orleans and adjacent portions of Jefferson and St. Bernard Parishes. This layer is image 2 of 4 total images of the four sheet source map, representing the southeast portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Louisiana State Plane Coordinate System, South NAD83 (in Feet) (Fipszone 1702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, railroads, canals, drainage, vegetation/ground cover, land ownership in outlying areas, selected public, private, and industrial buildings, parks, cemeteries, Parish boundaries, ferry routes and more. Relief shown by contours. Detailed depths of the Mississippi River shown with soundings and dates of survey, and survey control points. River banks and bottom soil types shown. Includes index chart, list of authorities, and notes. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Survey of the Mississippi River : made under the direction of the Mississippi River Commission : chart no. 76, projected from a trigonometrical survey made by the U.S. Coast survey in 1874. It was published by the Mississippi River Commission ca. 1895. Scale 1:10,000. Covers the City of New Orleans and adjacent portions of Jefferson and St. Bernard Parishes. This layer is image 3 of 4 total images of the four sheet source map, representing the southwest portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Louisiana State Plane Coordinate System, South NAD83 (in Feet) (Fipszone 1702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, railroads, canals, drainage, vegetation/ground cover, land ownership in outlying areas, selected public, private, and industrial buildings, parks, cemeteries, Parish boundaries, ferry routes and more. Relief shown by contours. Detailed depths of the Mississippi River shown with soundings and dates of survey, and survey control points. River banks and bottom soil types shown. Includes index chart, list of authorities, and notes. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Survey of the Mississippi River : made under the direction of the Mississippi River Commission : chart no. 76, projected from a trigonometrical survey made by the U.S. Coast survey in 1874. It was published by the Mississippi River Commission ca. 1895. Scale 1:10,000. Covers the City of New Orleans and adjacent portions of Jefferson and St. Bernard Parishes. This layer is image 4 of 4 total images of the four sheet source map, representing the northwest portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Louisiana State Plane Coordinate System, South NAD83 (in Feet) (Fipszone 1702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, railroads, canals, drainage, vegetation/ground cover, land ownership in outlying areas, selected public, private, and industrial buildings, parks, cemeteries, Parish boundaries, ferry routes and more. Relief shown by contours. Detailed depths of the Mississippi River shown with soundings and dates of survey, and survey control points. River banks and bottom soil types shown. Includes index chart, list of authorities, and notes. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"April 1989."