896 resultados para Mining-Induced Stress
Resumo:
In order to obtain the distribution rules of in situ stress and mining-induced stress of Beiminghe Iron Mine, the stress relief method by overcoring was used to measure the in situ stress, and the MC type bore-hole stress gauge was adopted to measure the mining-induced stress. In the in situ stress measuring, the technique of improved hollow inclusion cells was adopted, which can realize complete temperature compensation. Based on the measuring results, the distribution model of in situ stress was established and analyzed. The in situ stress measuring result shows that the maximum horizontal stress is 1.75-2.45 times of vertical stress and almost 1.83 times of the minimum horizontal stress in this mineral field. And the mining-induced stress measuring result shows that, according to the magnitude of front abutment pressure the stress region can be separated into stress-relaxed area, stress-concentrated area and initial stress area. At the -50 m mining level of this mine, the range of stress-relaxed area is 0-3 m before mining face; the range of stress-concentrated area is 3-55 m before mining face, and the maximum mining-induced stress is 16.5-17.5 MPa, which is 15-20 m from the mining face. The coefficient of stress concentration is 1.85.
Resumo:
Cardiac failure occurs when the heart fails to adapt to chronic stresses. Reactive oxygen species (ROS)-dependent signaling is implicated in cardiac stress responses but the role of different ROS sources remains unclear. Here, we report that NADPH oxidase-4 (Nox4) facilitates cardiac adaptation to chronic stress. Unlike other Nox proteins, Nox4 activity is regulated mainly by its expression level which increased in cardiomyocytes during stresses such as pressure overload or hypoxia. To investigate the functional role of Nox4 during the cardiac response to stress, we generated mice with a genetic deletion of Nox4 or a cardiomyocyte-targeted overexpression of Nox4. Basal cardiac function was normal in both models but Nox4-null animals developed exaggerated contractile dysfunction, hypertrophy and cardiac dilatation during exposure to chronic overload whereas Nox4-transgenic mice were protected. Investigation of mechanisms underlying this protective effect revealed a significant Nox4-dependent preservation of myocardial capillary density after pressure overload. Nox4 enhanced stress-induced activation of cardiomyocyte Hif1 and the release of VEGF, resulting in an increased paracrine angiogenic activity. These data indicate that cardiomyocyte Nox4 is a novel inducible regulator of myocardial angiogenesis, a key determinant of cardiac adaptation to overload stress. Our results also have wider relevance to the use of non-specific antioxidant approaches in cardiac disease and may provide an explanation for the failure of such strategies in many settings.
Resumo:
As bactérias desempenham um papel chave na reciclagem de energia e matéria nas teias tróficas aquáticas. No entanto, as suas pequenas dimensões, curto tempo de geração e o facto de os seus genomas constituírem uma grande porção do seu volume celular, tornam as bactérias mais suscetíveis às alterações ambientais que os organismos superiores. O aumento dos níveis de radiação UVB (280-320 nm) constitui uma ameaça particularmente importante para as comunidades bacterianas dos sistemas aquáticos, uma vez que a radiação consegue penetrar até profundidades consideráveis. No entanto, os mecanismos através dos quais a radiação causa danos nas bactérias ainda não são claros, o que impede a modelação precisa dos efeitos da radiação UV nas comunidades bacterianas naturais. O bacterioneuston habita a microcamada superficial (primeiro milímetro da coluna de água), estando naturalmente exposto a níveis de radiação UV superiores aos que o bacterioplâncton está exposto. Deste modo, a microcamada superficial pode ser vista como um nicho ecológico modelo para estudar as interações entre as bactérias e a radiação UV. Os objetivos deste trabalho foram (i) avaliar a influência do nível de exposição natural à radiação das comunidades bacterianas na sua sensibilidade à radiação UV, através da comparação das respostas fotobiológicas do bacterioneuston e bacterioplâncton; (ii) aprofundar o conhecimento acerca dos mecanismos através dos quais a radiação UV causa danos, bem como dos fatores que afetam a interação entre a radiação UV e as bactérias; e (iii) avaliar o potencial da proteína RecA, que medeia a resposta SOS das bactérias, para ser usada como marcador de danos induzidos por UV nas comunidades bacterianas. Verificou-se que o bacterioneuston é mais resistente à radiação UVB que o bacterioplâncton e recupera de modo mais eficiente dos danos induzidos por UV, particularmente em condições de escassez de nutrientes, indicando assim que o nível de exposição natural das comunidades bacterianas à radiação afeta a sua sensibilidade à radiação UV. Os resultados das análises independentes do cultivo revelaram o potencial da radiação UV para afetar a estrutura das comunidades bacterianas ao selecionar bactérias resistentes. A análise do perfil de utilização de fontes de carbono usando o sistema de Ecoplacas Biolog ® e a determinação das taxas de incorporação de leucina e timidina permitiu também verificar que a radiação UV modifica o funcionamento das comunidades bacterianas. Os resultados obtidos indicam a possibilidade do bacterioneuston conter um conjunto de estirpes resistentes a UV que, mediante as condições meteorológicas apropriadas, podem ser selecionadas aquando da exposição à radiação.
Resumo:
In order to investigate whether prolonged stress interferes with the onset of sexual behavior at puberty and with fertility at adulthood, prepubertal male Wistar rats (40 days of age) were immobilized 6 h a day for 15 days (up to early puberty) or for 60 days (until sexual maturity). Pubertal stressed rats showed a two-fold increase in the latency for the first mount (probably due to repeated aversive experience in which a change of environment was always followed by immobilization) and a 2.5-fold increase in the frequency of thrusting (indicative of enhanced sexual performance). The apparently stimulatory effect of prolonged stress on the onset of sexual behavior is discussed in terms of increased testosterone level and interference with the complex interchanges between the neurotransmitters/neuropeptides involved in the central control of male sexual activity. Adult stressed animals were mated with normal females, which became pregnant but exhibited a more than two-fold increase in both pre-implantation and post-implantation loss, probably due to a smaller rate of fertilization and/or fertilization with damaged spermatozoa.
Resumo:
Vitamin A (vitA) is an essential nutrient that acts as an endocrine regulator of several metabolic pathways, modulating normal growth and health status of animals. Although the importance of vitA for normal haematology and immune response is well documented for higher vertebrates, there is limited information on the physiological effects of vitA on fish. Therefore, we designed a 130-day feeding trial to evaluate the effect of vitA supplementation on growth, haematology, immune function and resistance to experimental infection with Aeromonas hydrophila and cold-induced stress. A group of 320 Nile tilapia fingerlings 7.49 ± 0.19 g weight (mean ± SD) were randomly stocked into 40 250 L-aquaria and fed practical diets containing graded levels of vitA (0, 0.06, 0.12, 0.24, 0.48, 0.96, 1.92, 3.84 mg retinol (ROH) kg−1 diet. Growth, haematology, plasma protein profile and immune response were significantly affected by vitA supplementation; however, no clear protective effect of vitA supplementation on disease and cold stress resistance were observed in this study. Clinical signs of vitA deficiency were: resting and abnormal swimming behaviour, exophthalmia, haemorrhages at the base of fins and on skin, serous fluids in abdominal cavity, neutropenia, reduction in red blood cell count, haematocrit and haemoglobin evolving to high mortality rates in a short period of time. A dietary level of vitA around 1.2 mg ROH kg−1 may be required to prevent gross deficiency signs and promote proper growth and health status of Nile tilapia. VitA does not seem to have a pronounced effect on leucocyte differentiation, but clearly plays an important role on maintaining normal erythropoiesis.
Resumo:
Aim of the study In this study we examined the effects of Taiji on perceived stress and general self-efficacy (GSE), and investigated the mediating role of a Taiji-induced GSE increase on Taiji-related reduction of perceived stress. Materials and methods 70 healthy participants were randomly allocated either to the Taiji intervention group or the waiting list control group. The intervention lasted for 12 weeks comprising two Taiji classes per week. Before, shortly after, and two months after the intervention, we assessed the degree of perceived stress and GSE in all participants by employing the Perceived Stress Scale (PSS) and the GSE-Scale. Results Compared to controls, participants of the Taiji group showed a significantly stronger decrease of perceived stress and a higher increase in GSE from pre- to post-intervention assessment (PSS: p = 0.009; GSE: p = 0.006), as well as from pre-intervention to follow-up assessment (PSS: p = 0.018; GSE: p = 0.033). A mediator analysis based on a multiple regression approach revealed that a Taiji-related increase in GSE statistically mediated the reduction in perceived stress after Taiji as compared to baseline. Post hoc testing showed that the mediating effect of GSE was significant (p = 0.043). Conclusions Our findings confirm previously reported Taiji-related stress reducing and GSE enhancing effects with GSE increase mediating Taiji related reduction of perceived stress.
Resumo:
PDGFR is an important target for novel anticancer therapeutics because it is overexpressed in a wide variety of malignancies. Recently, however, several anticancer drugs that inhibit PDGFR signaling have been associated with clinical heart failure. Understanding this effect of PDGFR inhibitors has been difficult because the role of PDGFR signaling in the heart remains largely unexplored. As described herein, we have found that PDGFR-beta expression and activation increase dramatically in the hearts of mice exposed to load-induced cardiac stress. In mice in which Pdgfrb was knocked out in the heart in development or in adulthood, exposure to load-induced stress resulted in cardiac dysfunction and heart failure. Mechanistically, we showed that cardiomyocyte PDGFR-beta signaling plays a vital role in stress-induced cardiac angiogenesis. Specifically, we demonstrated that cardiomyocyte PDGFR-beta was an essential upstream regulator of the stress-induced paracrine angiogenic capacity (the angiogenic potential) of cardiomyocytes. These results demonstrate that cardiomyocyte PDGFR-beta is a regulator of the compensatory cardiac response to pressure overload-induced stress. Furthermore, our findings may provide insights into the mechanism of cardiotoxicity due to anticancer PDGFR inhibitors.
Resumo:
Global declines in amphibians likely have multiple causes, including widespread pesticide use. Our knowledge of pesticide effects on amphibians is largely limited to short-term (4-d) toxicity tests conducted under highly artificial conditions to determine lethal concentrations (LC50). We found that if we used slightly longer exposure times (10–16 d), low concentrations of the pesticide carbaryl (3–4% of LC504-d) killed 10–60% of gray treefrog (Hyla versicolor) tadpoles. If predatory cues also were present, the pesticide became 2–4 times more lethal, killing 60–98% of tadpoles. Thus, under more realistic conditions of increased exposure times and predatory stress, current application rates for carbaryl can potentially devastate gray treefrog populations. Further, because predator-induced stress is ubiquitous in animals and carbaryl's mode of action is common to many pesticides, these negative impacts may be widespread in nature.
Resumo:
Barley (Hordeum vulgare L.) plants were grown at different photon flux densities ranging from 100 to 1800 μmol m−2 s−1 in air and/or in atmospheres with reduced levels of O2 and CO2. Low O2 and CO2 partial pressures allowed plants to grow under high photosystem II (PSII) excitation pressure, estimated in vivo by chlorophyll fluorescence measurements, at moderate photon flux densities. The xanthophyll-cycle pigments, the early light-inducible proteins, and their mRNA accumulated with increasing PSII excitation pressure irrespective of the way high excitation pressure was obtained (high-light irradiance or decreased CO2 and O2 availability). These findings indicate that the reduction state of electron transport chain components could be involved in light sensing for the regulation of nuclear-encoded chloroplast gene expression. In contrast, no correlation was found between the reduction state of PSII and various indicators of the PSII light-harvesting system, such as the chlorophyll a-to-b ratio, the abundance of the major pigment-protein complex of PSII (LHCII), the mRNA level of LHCII, the light-saturation curve of O2 evolution, and the induced chlorophyll-fluorescence rise. We conclude that the chlorophyll antenna size of PSII is not governed by the redox state of PSII in higher plants and, consequently, regulation of early light-inducible protein synthesis is different from that of LHCII.