972 resultados para Mining frequent poly-regions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of discovering frequent poly-regions (i.e. regions of high occurrence of a set of items or patterns of a given alphabet) in a sequence is studied, and three efficient approaches are proposed to solve it. The first one is entropy-based and applies a recursive segmentation technique that produces a set of candidate segments which may potentially lead to a poly-region. The key idea of the second approach is the use of a set of sliding windows over the sequence. Each sliding window covers a sequence segment and keeps a set of statistics that mainly include the number of occurrences of each item or pattern in that segment. Combining these statistics efficiently yields the complete set of poly-regions in the given sequence. The third approach applies a technique based on the majority vote, achieving linear running time with a minimal number of false negatives. After identifying the poly-regions, the sequence is converted to a sequence of labeled intervals (each one corresponding to a poly-region). An efficient algorithm for mining frequent arrangements of intervals is applied to the converted sequence to discover frequently occurring arrangements of poly-regions in different parts of DNA, including coding regions. The proposed algorithms are tested on various DNA sequences producing results of significant biological meaning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of discovering frequent arrangements of regions of high occurrence of one or more items of a given alphabet in a sequence is studied, and two efficient approaches are proposed to solve it. The first approach is entropy-based and uses an existing recursive segmentation technique to split the input sequence into a set of homogeneous segments. The key idea of the second approach is to use a set of sliding windows over the sequence. Each sliding window keeps a set of statistics of a sequence segment that mainly includes the number of occurrences of each item in that segment. Combining these statistics efficiently yields the complete set of regions of high occurrence of the items of the given alphabet. After identifying these regions, the sequence is converted to a sequence of labeled intervals (each one corresponding to a region). An efficient algorithm for mining frequent arrangements of temporal intervals on a single sequence is applied on the converted sequence to discover frequently occurring arrangements of these regions. The proposed algorithms are tested on various DNA sequences producing results with significant biological meaning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracting frequent subtrees from the tree structured data has important applications in Web mining. In this paper, we introduce a novel canonical form for rooted labelled unordered trees called the balanced-optimal-search canonical form (BOCF) that can handle the isomorphism problem efficiently. Using BOCF, we define a tree structure guided scheme based enumeration approach that systematically enumerates only the valid subtrees. Finally, we present the balanced optimal search tree miner (BOSTER) algorithm based on BOCF and the proposed enumeration approach, for finding frequent induced subtrees from a database of labelled rooted unordered trees. Experiments on the real datasets compare the efficiency of BOSTER over the two state-of-the-art algorithms for mining induced unordered subtrees, HybridTreeMiner and UNI3. The results are encouraging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an algorithm for mining unordered embedded subtrees using the balanced-optimal-search canonical form (BOCF). A tree structure guided scheme based enumeration approach is defined using BOCF for systematically enumerating the valid subtrees only. Based on this canonical form and enumeration technique, the balanced optimal search embedded subtree mining algorithm (BEST) is introduced for mining embedded subtrees from a database of labelled rooted unordered trees. The extensive experiments on both synthetic and real datasets demonstrate the efficiency of BEST over the two state-of-the-art algorithms for mining embedded unordered subtrees, SLEUTH and U3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detecting bugs as early as possible plays an important role in ensuring software quality before shipping. We argue that mining previous bug fixes can produce good knowledge about why bugs happen and how they are fixed. In this paper, we mine the change history of 717 open source projects to extract bug-fix patterns. We also manually inspect many of the bugs we found to get insights into the contexts and reasons behind those bugs. For instance, we found out that missing null checks and missing initializations are very recurrent and we believe that they can be automatically detected and fixed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we discuss our participation to the INEX 2008 Link-the-Wiki track. We utilized a sliding window based algorithm to extract the frequent terms and phrases. Using the extracted phrases and term as descriptive vectors, the anchors and relevant links (both incoming and outgoing) are recognized efficiently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multi-relational Data Mining approach has emerged as alternative to the analysis of structured data, such as relational databases. Unlike traditional algorithms, the multi-relational proposals allow mining directly multiple tables, avoiding the costly join operations. In this paper, is presented a comparative study involving the traditional Patricia Mine algorithm and its corresponding multi-relational proposed, MR-Radix in order to evaluate the performance of two approaches for mining association rules are used for relational databases. This study presents two original contributions: the proposition of an algorithm multi-relational MR-Radix, which is efficient for use in relational databases, both in terms of execution time and in relation to memory usage and the presentation of the empirical approach multirelational advantage in performance over several tables, which avoids the costly join operations from multiple tables. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Once multi-relational approach has emerged as an alternative for analyzing structured data such as relational databases, since they allow applying data mining in multiple tables directly, thus avoiding expensive joining operations and semantic losses, this work proposes an algorithm with multi-relational approach. Methods: Aiming to compare traditional approach performance and multi-relational for mining association rules, this paper discusses an empirical study between PatriciaMine - an traditional algorithm - and its corresponding multi-relational proposed, MR-Radix. Results: This work showed advantages of the multi-relational approach in performance over several tables, which avoids the high cost for joining operations from multiple tables and semantic losses. The performance provided by the algorithm MR-Radix shows faster than PatriciaMine, despite handling complex multi-relational patterns. The utilized memory indicates a more conservative growth curve for MR-Radix than PatriciaMine, which shows the increase in demand of frequent items in MR-Radix does not result in a significant growth of utilized memory like in PatriciaMine. Conclusion: The comparative study between PatriciaMine and MR-Radix confirmed efficacy of the multi-relational approach in data mining process both in terms of execution time and in relation to memory usage. Besides that, the multi-relational proposed algorithm, unlike other algorithms of this approach, is efficient for use in large relational databases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Once multi-relational approach has emerged as an alternative for analyzing structured data such as relational databases, since they allow applying data mining in multiple tables directly, thus avoiding expensive joining operations and semantic losses, this work proposes an algorithm with multi-relational approach. Methods Aiming to compare traditional approach performance and multi-relational for mining association rules, this paper discusses an empirical study between PatriciaMine - an traditional algorithm - and its corresponding multi-relational proposed, MR-Radix. Results This work showed advantages of the multi-relational approach in performance over several tables, which avoids the high cost for joining operations from multiple tables and semantic losses. The performance provided by the algorithm MR-Radix shows faster than PatriciaMine, despite handling complex multi-relational patterns. The utilized memory indicates a more conservative growth curve for MR-Radix than PatriciaMine, which shows the increase in demand of frequent items in MR-Radix does not result in a significant growth of utilized memory like in PatriciaMine. Conclusion The comparative study between PatriciaMine and MR-Radix confirmed efficacy of the multi-relational approach in data mining process both in terms of execution time and in relation to memory usage. Besides that, the multi-relational proposed algorithm, unlike other algorithms of this approach, is efficient for use in large relational databases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sequential pattern mining is an important subject in data mining with broad applications in many different areas. However, previous sequential mining algorithms mostly aimed to calculate the number of occurrences (the support) without regard to the degree of importance of different data items. In this paper, we propose to explore the search space of subsequences with normalized weights. We are not only interested in the number of occurrences of the sequences (supports of sequences), but also concerned about importance of sequences (weights). When generating subsequence candidates we use both the support and the weight of the candidates while maintaining the downward closure property of these patterns which allows to accelerate the process of candidate generation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report deals with a study of the properties of internal cavities of dendritic macromolecules that are capable Of encapsulating and mediating photoreactions of guest molecules. The internal cavity structures of dendrimers are determined by the interfacial regions between the aqueous exterior and hydrocarbon like interior constituted by the linkers that connect symmetrically sited branch points constituting the dendrimer and head groups that cap the dendrimers. Phloroglucinol-based poly(alkyl aryl ether) dendrimers constituted with a homologous series of alkyl linkers were undertaken for the current study. Twelve dendrimers within first, second, and third generations, having ethyl, n-propyl, n-butyl, and n-pentyl groups as the linkers and hydroxyl groups at peripheries in each generation, were synthesized. Encapsulation of pyrene and coumarins by aqueous basic solutions of dendrimers were monitored-by UV-vis and fluorescence spectroscopies, which showed that a lower generation dendrimer with an optimal alkyl linker presented better encapsulation abilities than a higher generation dendrimer. Norrish type I photoreaction of dibenzyl ketone was carried out within the above: series of dendrimers to probe their abilities to hold guests and reactive inthermediate radical pairs within themselves. The extent of cage effect from the series of third generation dendrimers was observed to be higher with dendrimers having an n-pentyl group as the linker.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the emergence of large-volume and high-speed streaming data, the recent techniques for stream mining of CFIpsilas (closed frequent itemsets) will become inefficient. When concept drift occurs at a slow rate in high speed data streams, the rate of change of information across different sliding windows will be negligible. So, the user wonpsilat be devoid of change in information if we slide window by multiple transactions at a time. Therefore, we propose a novel approach for mining CFIpsilas cumulatively by making sliding width(ges1) over high speed data streams. However, it is nontrivial to mine CFIpsilas cumulatively over stream, because such growth may lead to the generation of exponential number of candidates for closure checking. In this study, we develop an efficient algorithm, stream-close, for mining CFIpsilas over stream by exploring some interesting properties. Our performance study reveals that stream-close achieves good scalability and has promising results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problem of discovering frequent arrangements of temporal intervals is studied. It is assumed that the database consists of sequences of events, where an event occurs during a time-interval. The goal is to mine temporal arrangements of event intervals that appear frequently in the database. The motivation of this work is the observation that in practice most events are not instantaneous but occur over a period of time and different events may occur concurrently. Thus, there are many practical applications that require mining such temporal correlations between intervals including the linguistic analysis of annotated data from American Sign Language as well as network and biological data. Two efficient methods to find frequent arrangements of temporal intervals are described; the first one is tree-based and uses depth first search to mine the set of frequent arrangements, whereas the second one is prefix-based. The above methods apply efficient pruning techniques that include a set of constraints consisting of regular expressions and gap constraints that add user-controlled focus into the mining process. Moreover, based on the extracted patterns a standard method for mining association rules is employed that applies different interestingness measures to evaluate the significance of the discovered patterns and rules. The performance of the proposed algorithms is evaluated and compared with other approaches on real (American Sign Language annotations and network data) and large synthetic datasets.