969 resultados para Minimum spanning tree


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a method for producing dense Active Appearance Models (AAMs), suitable for video-realistic synthesis. To this end we estimate a joint alignment of all training images using a set of pairwise registrations and ensure that these pairwise registrations are only calculated between similar images. This is achieved by defining a graph on the image set whose edge weights correspond to registration errors and computing a bounded diameter minimum spanning tree (BDMST). Dense optical flow is used to compute pairwise registration and we introduce a flow refinement method to align small scale texture. Once registration between training images has been established we propose a method to add vertices to the AAM in a way that minimises error between the observed flow fields and a flow field interpolated between the AAM mesh points. We demonstrate a significant improvement in model compactness using the proposed method and show it dealing with cases that are problematic for current state-of-the-art approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fast Knowledge-based Evolution Strategy, KES, for the multi-objective minimum spanning tree, is presented. The proposed algorithm is validated, for the bi-objective case, with an exhaustive search for small problems (4-10 nodes), and compared with a deterministic algorithm, EPDA and NSGA-II for larger problems (up to 100 nodes) using benchmark hard instances. Experimental results show that KES finds the true Pareto fronts for small instances of the problem and calculates good approximation Pareto sets for larger instances tested. It is shown that the fronts calculated by YES are superior to NSGA-II fronts and almost as good as those established by EPDA. KES is designed to be scalable to multi-objective problems and fast due to its small complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hybridised and Knowledge-based Evolutionary Algorithm (KEA) is applied to the multi-criterion minimum spanning tree problems. Hybridisation is used across its three phases. In the first phase a deterministic single objective optimization algorithm finds the extreme points of the Pareto front. In the second phase a K-best approach finds the first neighbours of the extreme points, which serve as an elitist parent population to an evolutionary algorithm in the third phase. A knowledge-based mutation operator is applied in each generation to reproduce individuals that are at least as good as the unique parent. The advantages of KEA over previous algorithms include its speed (making it applicable to large real-world problems), its scalability to more than two criteria, and its ability to find both the supported and unsupported optimal solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel approach to the computation of primitive geometrical structures, where no prior knowledge about the visual scene is available and a high level of noise is expected. We based our work on the grouping principles of proximity and similarity, of points and preliminary models. The former was realized using Minimum Spanning Trees (MST), on which we apply a stable alignment and goodness of fit criteria. As for the latter, we used spectral clustering of preliminary models. The algorithm can be generalized to various model fitting settings, without tuning of run parameters. Experiments demonstrate the significant improvement in the localization accuracy of models in plane, homography and motion segmentation examples. The efficiency of the algorithm is not dependent on fine tuning of run parameters like most others in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Text segmentation and localization algorithms are proposed for the born-digital image dataset. Binarization and edge detection are separately carried out on the three colour planes of the image. Connected components (CC's) obtained from the binarized image are thresholded based on their area and aspect ratio. CC's which contain sufficient edge pixels are retained. A novel approach is presented, where the text components are represented as nodes of a graph. Nodes correspond to the centroids of the individual CC's. Long edges are broken from the minimum spanning tree of the graph. Pair wise height ratio is also used to remove likely non-text components. A new minimum spanning tree is created from the remaining nodes. Horizontal grouping is performed on the CC's to generate bounding boxes of text strings. Overlapping bounding boxes are removed using an overlap area threshold. Non-overlapping and minimally overlapping bounding boxes are used for text segmentation. Vertical splitting is applied to generate bounding boxes at the word level. The proposed method is applied on all the images of the test dataset and values of precision, recall and H-mean are obtained using different approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snow cleaning is one of the important tasks in the winter time in Sweden. Every year government spends huge amount money for snow cleaning purpose. In this thesis we generate a shortest road network of the city and put the depots in different place of the city for snow cleaning. We generate shortest road network using minimum spanning tree algorithm and find the depots position using greedy heuristic. When snow is falling, vehicles start work from the depots and clean the snow all the road network of the city. We generate two types of model. Models are economic model and efficient model. Economic model provide good economical solution of the problem and it use less number of vehicles. Efficient model generate good efficient solution and it take less amount of time to clean the entire road network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When designing metaheuristic optimization methods, there is a trade-off between application range and effectiveness. For large real-world instances of combinatorial optimization problems out-of-the-box metaheuristics often fail, and optimization methods need to be adapted to the problem at hand. Knowledge about the structure of high-quality solutions can be exploited by introducing a so called bias into one of the components of the metaheuristic used. These problem-specific adaptations allow to increase search performance. This thesis analyzes the characteristics of high-quality solutions for three constrained spanning tree problems: the optimal communication spanning tree problem, the quadratic minimum spanning tree problem and the bounded diameter minimum spanning tree problem. Several relevant tree properties, that should be explored when analyzing a constrained spanning tree problem, are identified. Based on the gained insights on the structure of high-quality solutions, efficient and robust solution approaches are designed for each of the three problems. Experimental studies analyze the performance of the developed approaches compared to the current state-of-the-art.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finding the degree-constrained minimum spanning tree (DCMST) of a graph is a widely studied NP-hard problem. One of its most important applications is network design. Here we deal with a new variant of the DCMST problem, which consists of finding not only the degree- but also the role-constrained minimum spanning tree (DRCMST), i.e., we add constraints to restrict the role of the nodes in the tree to root, intermediate or leaf node. Furthermore, we do not limit the number of root nodes to one, thereby, generally, building a forest of DRCMSTs. The modeling of network design problems can benefit from the possibility of generating more than one tree and determining the role of the nodes in the network. We propose a novel permutation-based representation to encode these forests. In this new representation, one permutation simultaneously encodes all the trees to be built. We simulate a wide variety of DRCMST problems which we optimize using eight different evolutionary computation algorithms encoding individuals of the population using the proposed representation. The algorithms we use are: estimation of distribution algorithm, generational genetic algorithm, steady-state genetic algorithm, covariance matrix adaptation evolution strategy, differential evolution, elitist evolution strategy, non-elitist evolution strategy and particle swarm optimization. The best results are for the estimation of distribution algorithms and both types of genetic algorithms, although the genetic algorithms are significantly faster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The minimum spanning tree algorithm is used to classify two sets of planktonic copepod samples. This algorithm links the samples the distance of which is minimum, without doing a loop, so that the sum of the segment lengths is minimum. The authors estimated the distance between samples by 2 different ways: by a coefficient of association the Jaccard's index - and by the x2 distance. Jaccard's index is not retained but the use of the x2 distance allows comparison with the 'analyse factorielle des correspondances'. The results are discussed from an ecological point of view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A propriedade de auto-cura, em redes inteligente de distribuição de energia elétrica, consiste em encontrar uma proposta de reconfiguração do sistema de distribuição com o objetivo de recuperar parcial ou totalmente o fornecimento de energia aos clientes da rede, na ocorrência de uma falha na rede que comprometa o fornecimento. A busca por uma solução satisfatória é um problema combinacional cuja complexidade está ligada ao tamanho da rede. Um método de busca exaustiva se torna um processo muito demorado e muitas vezes computacionalmente inviável. Para superar essa dificuldade, pode-se basear nas técnicas de geração de árvores de extensão mínima do grafo, representando a rede de distribuição. Porém, a maioria dos estudos encontrados nesta área são implementações centralizadas, onde proposta de reconfiguração é obtida por um sistema de supervisão central. Nesta dissertação, propõe-se uma implementação distribuída, onde cada chave da rede colabora na elaboração da proposta de reconfiguração. A solução descentralizada busca uma redução no tempo de reconfiguração da rede em caso de falhas simples ou múltiplas, aumentando assim a inteligência da rede. Para isso, o algoritmo distribuído GHS é utilizado como base na elaboração de uma solução de auto-cura a ser embarcada nos elementos processadores que compõem as chaves de comutação das linhas da rede inteligente de distribuição. A solução proposta é implementada utilizando robôs como unidades de processamento que se comunicam via uma mesma rede, constituindo assim um ambiente de processamento distribuído. Os diferentes estudos de casos testados mostram que, para redes inteligentes de distribuição compostas por um único alimentador, a solução proposta obteve sucesso na reconfiguração da rede, indiferentemente do número de falhas simultâneas. Na implementação proposta, o tempo de reconfiguração da rede não depende do número de linhas nela incluídas. A implementação apresentou resultados de custo de comunicação e tempo dentro dos limites teóricos estabelecidos pelo algoritmo GHS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We proposed a novel methodology, which firstly, extracting features from species' complete genome data, using k-tuple, followed by studying the evolutionary relationship between SARS-CoV and other coronavirus species using the method, called "High-dimensional information geometry". We also used the mothod, namely "caculating of Minimum Spanning Tree", to construct the Phyligenetic tree of the coronavirus. From construction of the unrooted phylogenetic tree, we found out that the evolution distance between SARS-CoV and other coronavirus species is comparatively far. The tree accurately rebuilt the three groups of other coronavirus. We also validated the assertion from other literatures that SARS-CoV is similar to the coronavirus species in Group I.