985 resultados para Minimum quantity of fluid
Resumo:
This research aimed to analyze the viability of the minimum quantity of lubricant (MQL) technique towards different methods of lubri-refrigeration in surface grinding of steel, considering process quality, wheel life and the viability of using cutting fluids The proposal methods were the conventional (abundant fluid flow), the minimum quantity lubrication (MQL) and the optimized method with Webster nozzle (rounded) This analysis was carried out in equal machining conditions, through the assessment of variables such as grinding force, surface roughness, G ratio (volume of removed material/volume of wheel wear), and microhardness The results showed the possibility of improvement of the grinding process Besides, there is the opportunity for production of high quality workpieces with lower costs The MQL technique showed efficiency in machining with lower depths of cut The optimized method with Webster nozzle applies the fluid in a rational way, without considerable waste Hence, the results show that industry can rationalize and optimize the application of cutting fluids, avoiding inappropriate disposal, inadequate use and consequently environment pollution
Resumo:
In this study, different methods of cutting fluid application are used in turning of a difficult-to-machine steel (SAE EV-8). Initially, a semisynthetic cutting fluid was applied using a conventional method (i.e. overhead flood cooling), minimum quantity of cutting fluid, and pulverization. A lubricant of vegetable oil (minimum quantity of lubricant) was also applied using the minimum quantity method. Thereafter, a cutting fluid jet under high pressure (3.0 MPa) was singly applied in the following regions: chip-tool interface, top surface of the chip (between workpiece and chip) and tool-workpiece contact. Moreover, two other methods were used: an interflow between conventional application and chip-tool interface jet (combined method) and, finally, three jets simultaneously applied. In order to carry out these tests, it was necessary to set up a high-pressure system using a piston pump for generating a cutting fluid jet, a venturi for fluid application (minimum quantity of cutting fluid and minimum quantity of lubricant) and a nozzle for cutting fluid pulverization. The output variables analyzed included tool life, surface roughness, cutting tool temperature, cutting force, chip form, chip compression rate and machined specimen microstructure. Among the results, it can be observed that the tool life increases and the cutting force decreases with the application of cutting fluid jet, mainly when it is directed to the chip-tool interface. Excluding the methods involving jet fluid, the conventional method seems to be more efficient than other methods of low pressure, such as minimum quantity of volume and pulverization, when considering just the cutting tool wear. © 2013 IMechE.
Resumo:
Different methods of cutting fluid application are used on turning of a difficult-tomachine steel (SAE EV-8). A semi-synthetic cutting fluid was applied using a conventional method, minimum quantity of cutting fluid (MQCF), and pulverization. By the minimum quantity method was also applied a lubricant of vegetable oil (MQL). Thereafter, a cutting fluid jet under high pressure (3.0 MPa) was singly applied in the following regions: chip-tool interface; top surface of the chip; and tool-workpiece contact. Two other methods were used: an interflow between conventional application and chip-tool interface jet and, finally, three jets simultaneously applied. In order to carry out these tests, it was necessary to set up a high pressure system using a piston pump for generating a cutting fluid jet, a Venturi for fluid application (MQCF and MQL), and a nozzle for cutting fluid pulverization. The output variables analyzed included tool life, surface roughness, cutting tool temperature, cutting force, chip form, chip compression rate and machined specimen microstructure. It can be observed that the tool life increases and the cutting force decreases with the application of cutting fluid jet, mainly when it is directed to the chip-tool interface. Excluding the methods involving jet fluid, the conventional method seems to be more efficient than other methods of low pressure. © (2013) Trans Tech Publications, Switzerland.
Resumo:
In the last decade a lot has been discussed about the suitability of using cutting fluid in abundance to cool and lubricate machining processes. The use of cutting fluid generally causes economy of tools and it becomes easier to keep tight tolerances and to maintain workpiece surface properties without damages. In the other hand, it brings also some problems, like fluid residuals and human diseases. Because of them some alternatives has been sought to minimise or even avoid the use of cutting fluid in machining operations. Some of these alternatives are dry cutting and cutting with minimum quantity of fluid (MQF). The main goal of this work is to discuss these tendencies. Therefore, topics like kinds and methods of applications of modern cutting fluids and what are new in this area will unavoidably be considered. MQF and dry cutting techniques, their applications and where it is not possible to apply them will also be focused. To exemplify the topics, this work will describe some of the researches been developed in two important Brazilian Universities: State University of Campinas (UNICAMP) and Federal University of Uberlândia (UFU).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
The quality of machined components is currently of high interest, for the market demands mechanical components of increasingly high performance, not only from the standpoint of functionality but also from that of safety. Components produced through operations involving the removal of material display surface irregularities resulting not only from the action of the tool itself, but also from other factors that contribute to their superficial texture. This texture can exert a decisive influence on the application and performance of the machined component. This article analyzes the behavior of the minimum quantity lubricant (MQL) technique and compares it with the conventional cooling method. To this end, an optimized fluid application method was devised using a specially designed nozzle, by the authors, through which a minimum amount of oil is sprayed in a compressed air flow, thus meeting environmental requirements. This paper, therefore, explores and discusses the concept of the MQL in the grinding process. The performance of the MQL technique in the grinding process was evaluated based on an analysis of the surface integrity (roughness, residual stress, microstructure and microhardness). The results presented here are expected to lead to technological and ecological gains in the grinding process using MQL. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
With the currently strict environmental law in present days, researchers and industries are seeking to reduce the amount of cutting fluid used in machining. Minimum quantity lubrication is a potential alternative to reduce environmental impacts and overall process costs. This technique can substantially reduce cutting fluids in grinding, as well as provide better performance in relation to conventional cutting fluid application (abundant fluid flow). The present work aims to test the viability of minimum quantity lubrication (with and without water) in grinding of advanced ceramics, when compared to conventional method (abundant fluid flow). Measured output variables were grinding power, surface roughness, roundness errors and wheel wear, as well as scanning electron micrographs. The results show that minimum quantity lubrication with water (1:1) was superior to conventional lubrication-cooling in terms of surface quality, also reducing wheel wear, when compared to the other methods tested.
Resumo:
The purpose of this work is to explain the concept of cutting fluids reasonable usage through the fluid minimum quantity in grinding processes. on that purpose, the development of a new nozzle and an own and adequate methodology should be required in order to obtain good results and compare them to the conventional methods. The analysis of the grinding wheel/cutting fluid performance was accomplished from the following input parameters: flow rate variation by nozzle diameter changes (three diameters values: 3mm, 4mm and 5mm), besides the conventional round nozzle already within the machine. Integral oil and a synthetic emulsion were used as cutting fluids and a conventional grinding wheel was employed. The workpieces were made of steel VC 131, tempered and quenched with 60HRc. Thus, as the flow rate and the nozzle diameter changes, keeping steady fluid jet velocity (equal to cutting velocity), attempted to find the best machining conditions, with the purpose to obtain a decrease on the cutting fluid volume, taking into consideration the analysis of the process output variables such as cutting strength, cutting specific energy, grinding wheel wear and surface roughness. It was verified that the 3mm diameter optimized nozzle and the integral oil, in general, was the best combination among all proposed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)