883 resultados para Minimal overlap rule
Resumo:
As it is known, there is no rule satisfying additivity in the complete domain of bankruptcy problems. This paper proposes a notion of partial additivity in this context, to be called μ-additivity. We find out that this property, together with two quite compelling axioms, equal treatment of equals and continuity, identify the minimal overlap rule, introduced by O’Neill (Math. Soc. Sci. 2:345–371, 1982).
Resumo:
In this paper we introduce a new cost sharing rule-the minimal overlap cost sharing rule-which is associated with the minimal overlap rule for claims problems defined by O'Neill (1982). An axiomatic characterization is given by employing a unique axiom: demand separability. Variations of this axiom enable the serial cost sharing rule (Moulin and Shenker, 1992) and the rules of a family (Albizuri, 2010) that generalize the serial cost sharing rule to be characterized. Finally, a family that includes the minimal overlap cost sharing rule is defined and obtained by means of an axiomatic characterization.
Resumo:
In this paper we introduce a new axiom, denoted claims separability, that is satisfied by several classical division rules defined for claims problems. We characterize axiomatically the entire family of division rules that satisfy this new axiom. In addition, employing claims separability, we characterize the minimal overlap rule, given by O'Neill (1982), Piniles rule and the rules in the TAL-family, introduced by Moreno-Ternero and Villar (2006), which includes the uniform gains rule, the uniform losses rule and the Talmud rule.
Resumo:
Hart and Mas Colell (1989) introduce the potential function for cooperative TU games. In this paper, we extend this approach to claims problems, also known as bankruptcy or rationing problems. We show that for appropriate subproblems, the random arrival rule, the rules in the TAL-family (which include the uniform gains rule, the uniform losses rule and the Talmud rule), the minimal overlap rule, and the proportional rule admit a potential. We also study the balanced contributions property for these rules. By means of a potential, we introduce a generalization of the random arrival rule and mixtures of the minimal overlap rule and the uniform losses rule.
Resumo:
We introduce and analyze a new solution concept for TU games:The Surplus Distributor Prekernel. Like the prekermel, the new solu- tion is based on the an alternative motion of complaint of one player against other with respect to an allocation. The SD-prekernel contains the SD-prenucleolus and they coincide in the class of convex games. This result allows us to prove that in bankruptcy problems the SD-prekernel and the Minimal Overlapping rule select the same allocation.
Resumo:
The Survivability of Swedish Emergency Management Related Research Centers and Academic Programs: A Preliminary Sociology of Science Analysis Despite being a relatively safe nation, Sweden has four different universities supporting four emergency management research centers and an equal and growing number of academic programs. In this paper, I discuss how these centers and programs survive within the current organizational environment. The sociology of science or the sociology of scientific knowledge perspectives should provide a theoretical guide. Yet, scholars of these perspectives have produced no research on these related topics. Thus, the population ecology model and the notion of organizational niche provide my theoretical foundation. My data come from 26 interviews from those four institutions, the gathering of documents, and observations. I found that each institution has found its own niche with little or no competition – with one exception. Three of the universities do have an international focus. Yet, their foci have minimal overlap. Finally, I suggest that key aspects of Swedish culture, including safety, and a need aid to the poor, help explain the extensive funding these centers and programs receive to survive.
Resumo:
Propensity score (PS) techniques are useful if the number of potential confounding pretreatment variables is large and the number of analysed outcome events is rather small so that conventional multivariable adjustment is hardly feasible. Only pretreatment characteristics should be chosen to derive PS, and only when they are probably associated with outcome. A careful visual inspection of PS will help to identify areas of no or minimal overlap, which suggests residual confounding, and trimming of the data according to the distribution of PS will help to minimise residual confounding. Standardised differences in pretreatment characteristics provide a useful check of the success of the PS technique employed. As with conventional multivariable adjustment, PS techniques cannot account for confounding variables that are not or are only imperfectly measured, and no PS technique is a substitute for an adequately designed randomised trial.
Resumo:
Ornithine decarboxylase (ODC), the first enzyme in polyamine biosynthesis, is highly regulated by many trophic stimuli, and changes in its levels and organization correlate with cytoskeletal changes in normal human epidermal keratinocytes (NHEK). NHEK ODC exhibits a filamentous perinuclear/nuclear localization that becomes more diffuse under conditions that alter actin architecture. We have thus asked whether ODC colocalizes with a component of the NHEK cytoskeleton. Confocal immunofluorescence showed that ODC distribution in NHEK was primarily perinuclear; upon disruption of the actin cytoskeleton with cytochalasin D, ODC distribution was diffuse. The ODC distribution in untreated NHEK overlapped with that of keratin in the perinuclear but not cytoplasmic area; after treatment with cytochalasin D, overlap between staining for ODC and for keratin was extensive. No significant overlap with actin and minimal overlap with tubulin filament systems were observed. Subcellular fractionation by sequential homogenizations and centrifugations of NHEK lysates or detergent and salt extractions of NHEK in situ revealed that ODC protein and activity were detectable in both soluble and insoluble fractions, with mechanical disruption causing additional solubilization of ODC activity (three- to sevenfold above controls). Fractionation and ODC immunoprecipitation from [32P]orthophosphate-labeled NHEK lysates showed that a phosphorylated form of ODC was present in the insoluble fractions. Taken together, these data suggest that two pools of ODC exist in NHEK. The first is the previously described soluble pool, and the second is enriched in phospho-ODC and associated with insoluble cellular material that by immunohistochemistry appears to be organized in conjunction with the keratin cytoskeleton.
Resumo:
We have characterized a distinctive type of bistratified amacrine cell in the rabbit retina at both the single cell and population levels. These cells correspond to the fountain amacrine cells recently identified by MacNeil and Masland (1998). The fountain cells can be distinguished in superfused retinal wholemounts labeled with nuclear dyes, thus enabling them to be targeted for intracellular injection with Neurobiotin. This revealed that the primary dendrites ascend steeply to sublamina b of the inner plexiform layer, where they form an irregular arbor at the border of strata 4 and 5. These dendrites then give rise to multiple varicose processes that descend obliquely to sublamina a, where they form a more extensive arbor in stratum 1. The fountain amacrine cells show strong homologous tracer coupling when injected with Neurobiotin, and this has enabled us to map their density distribution across the retina and to examine the dendritic relationships between neighboring cells. The fountain amacrine cells range in density from 90 to 360 cells/mm(2) and they account for 1.5% of the amacrine cells in the rabbit retina. The thick tapering dendrites in sublamina b form highly territorial arbors that tile the retina with minimal overlap, whereas the thin varicose processes intermingle in sublamina a. The fountain cells are immunopositive for gamma-aminobutyric acid and immunonegative for glycine. We further propose that these cells are homologous to the substance P-immunoreactive (SP-IR) amacrine cells in the cat retina and that they may account for a subset of the SP-IR amacrine cells in the rabbit retina.
Resumo:
Background: Myeloproliferative neoplasms (MPNs) including the classic entities; polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis are rare diseases with unknown aetiology. The MOSAICC study, is an exploratory case–control study in which information was collected through telephone questionnaires and medical records. Methods: As part of the study, 106 patients with MPN were asked about their perceived diagnosis and replies correlated with their haematologist’s diagnosis. For the first time, a patient perspective on their MPN diagnosis and classification was obtained. Logistic regression analyses were utilised to evaluate the role of variables in whether or not a patient reported their diagnosis during interview with co-adjustment for these variables. Chi square tests were used to investigate the association between MPN subtype and patient reported categorisation of MPN. Results: Overall, 77.4 % of patients reported a diagnosis of MPN. Of those, 39.6 % recognised MPN as a ‘blood condition’,23.6 % recognised MPN as a ‘cancer’ and 13.2 % acknowledged MPN as an ‘other medical condition’. There was minimal overlap between the categories. Patients with PV were more likely than those with ET to report their disease as a ‘blood condition’. ET patients were significantly more likely than PV patients not to report their condition at all.Patients from a single centre were more likely to report their diagnosis as MPN while age, educational status, and WHO re-classification had no effect. Conclusions: The discrepancy between concepts of MPN in patients could result from differing patient interest in their condition, varying information conveyed by treating hematologists, concealment due to denial or financial concerns. Explanations for the differences in patient perception of the nature of their disease, requires further, larger scale investigation.
Resumo:
In many applications, e.g., bioinformatics, web access traces, system utilisation logs, etc., the data is naturally in the form of sequences. People have taken great interest in analysing the sequential data and finding the inherent characteristics or relationships within the data. Sequential association rule mining is one of the possible methods used to analyse this data. As conventional sequential association rule mining very often generates a huge number of association rules, of which many are redundant, it is desirable to find a solution to get rid of those unnecessary association rules. Because of the complexity and temporal ordered characteristics of sequential data, current research on sequential association rule mining is limited. Although several sequential association rule prediction models using either sequence constraints or temporal constraints have been proposed, none of them considered the redundancy problem in rule mining. The main contribution of this research is to propose a non-redundant association rule mining method based on closed frequent sequences and minimal sequential generators. We also give a definition for the non-redundant sequential rules, which are sequential rules with minimal antecedents but maximal consequents. A new algorithm called CSGM (closed sequential and generator mining) for generating closed sequences and minimal sequential generators is also introduced. A further experiment has been done to compare the performance of generating non-redundant sequential rules and full sequential rules, meanwhile, performance evaluation of our CSGM and other closed sequential pattern mining or generator mining algorithms has also been conducted. We also use generated non-redundant sequential rules for query expansion in order to improve recommendations for infrequently purchased products.
Resumo:
Text segmentation and localization algorithms are proposed for the born-digital image dataset. Binarization and edge detection are separately carried out on the three colour planes of the image. Connected components (CC's) obtained from the binarized image are thresholded based on their area and aspect ratio. CC's which contain sufficient edge pixels are retained. A novel approach is presented, where the text components are represented as nodes of a graph. Nodes correspond to the centroids of the individual CC's. Long edges are broken from the minimum spanning tree of the graph. Pair wise height ratio is also used to remove likely non-text components. A new minimum spanning tree is created from the remaining nodes. Horizontal grouping is performed on the CC's to generate bounding boxes of text strings. Overlapping bounding boxes are removed using an overlap area threshold. Non-overlapping and minimally overlapping bounding boxes are used for text segmentation. Vertical splitting is applied to generate bounding boxes at the word level. The proposed method is applied on all the images of the test dataset and values of precision, recall and H-mean are obtained using different approaches.
Resumo:
We consider the possibility that the heavier CP-even Higgs boson (H-0) in the minimal supersymmetric standard model (MSSM) decays invisibly into neutralinos in the light of the recent discovery of the 126 GeV resonance at the CERN Large Hadron Collider (LHC). For this purpose we consider the minimal supersymmetric standard model with universal, nonuniversal and arbitrary boundary conditions on the supersymmetry breaking gaugino mass parameters at the grand unified scale. Typically, scenarios with universal and nonuniversal gaugino masses do not allow invisible decays of the lightest Higgs boson (h(0)), which is identified with the 126 GeV resonance, into the lightest neutralinos in the MSSM. With arbitrary gaugino masses at the grand unified scale, such an invisible decay is possible. The second lightest Higgs boson can decay into various invisible final states for a considerable region of the MSSM parameter space with arbitrary gaugino masses as well as with the gaugino masses restricted by universal and nonuniversal boundary conditions at the grand unified scale. The possibility of the second lightest Higgs boson of the MSSM decaying into invisible channels is more likely for arbitrary gaugino masses at the grand unified scale. The heavier Higgs boson decay into lighter particles leads to the intriguing possibility that the entire Higgs boson spectrum of the MSSM may be visible at the LHC even if it decays invisibly, during the searches for an extended Higgs boson sector at the LHC. In such a scenario the nonobservation of the extended Higgs sector of the MSSM may carefully be used to rule out regions of the MSSM parameter space at the LHC.
Resumo:
Association rule mining is an indispensable tool for discovering
insights from large databases and data warehouses.
The data in a warehouse being multi-dimensional, it is often
useful to mine rules over subsets of data defined by selections
over the dimensions. Such interactive rule mining
over multi-dimensional query windows is difficult since rule
mining is computationally expensive. Current methods using
pre-computation of frequent itemsets require counting
of some itemsets by revisiting the transaction database at
query time, which is very expensive. We develop a method
(RMW) that identifies the minimal set of itemsets to compute
and store for each cell, so that rule mining over any
query window may be performed without going back to the
transaction database. We give formal proofs that the set of
itemsets chosen by RMW is sufficient to answer any query
and also prove that it is the optimal set to be computed
for 1 dimensional queries. We demonstrate through an extensive
empirical evaluation that RMW achieves extremely
fast query response time compared to existing methods, with
only moderate overhead in pre-computation and storage
Resumo:
A common real-life problem is to fairly allocate a number of indivisible objects and a fixed amount of money among a group of agents. Fairness requires that each agent weakly prefers his consumption bundle to any other agent’s bundle. Under fairness, efficiency is equivalent to budget-balance (all the available money is allocated among the agents). Budget-balance and fairness in general are incompatible with non-manipulability (Green and Laffont, 1979). We propose a new notion of the degree of manipulability which can be used to compare the ease of manipulation in allocation mechanisms. Our measure counts for each problem the number of agents who can manipulate the rule. Given this notion, the main result demonstrates that maximally linked fair allocation rules are the minimally manipulable rules among all budget-balanced and fair allocation mechanisms. Such rules link any agent to the bundle of a pre-selected agent through indifferences (which can be viewed as indirect egalitarian equivalence).