998 resultados para Minimal action
Resumo:
Let G be a Kahler group admitting a short exact sequence 1 -> N -> G -> Q -> 1 where N is finitely generated. (i) Then Q cannot be non-nilpotent solvable. (ii) Suppose in addition that Q satisfies one of the following: (a) Q admits a discrete faithful non-elementary action on H-n for some n >= 2. (b) Q admits a discrete faithful non-elementary minimal action on a simplicial tree with more than two ends. (c) Q admits a (strong-stable) cut R such that the intersection of all conjugates of R is trivial. Then G is virtually a surface group. It follows that if Q is infinite, not virtually cyclic, and is the fundamental group of some closed 3-manifold, then Q contains as a finite index subgroup either a finite index subgroup of the three-dimensional Heisenberg group or the fundamental group of the Cartesian product of a closed oriented surface of positive genus and the circle. As a corollary, we obtain a new proof of a theorem of Dimca and Suciu in Which 3-manifold groups are Kahler groups? J. Eur. Math. Soc. 11 (2009) 521-528] by taking N to be the trivial group. If instead, G is the fundamental group of a compact complex surface, and N is finitely presented, then we show that Q must contain the fundamental group of a Seifert-fibered 3-manifold as a finite index subgroup, and G contains as a finite index subgroup the fundamental group of an elliptic fibration. We also give an example showing that the relation of quasi-isometry does not preserve Kahler groups. This gives a negative answer to a question of Gromov which asks whether Kahler groups can be characterized by their asymptotic geometry.
Resumo:
We consider extremal limits of the recently constructed ``subtracted geometry''. We show that extremality makes the horizon attractive against scalar perturbations, but radial evolution of such perturbations changes the asymptotics: from a conical-box to flat Minkowski. Thus these are black holes that retain their near-horizon geometry under perturbations that drastically change their asymptotics. We also show that this extremal subtracted solution (''subttractor'') can arise as a boundary of the basin of attraction for flat space attractors. We demonstrate this by using a fairly minimal action (that has connections with STU model) where the equations of motion are integrable and we are able to find analytic solutions that capture the flow from the horizon to the asymptotic region. The subttractor is a boundary between two qualitatively different flows. We expect that these results have generalizations for other theories with charged dilatonic black holes.
Resumo:
The purpose of this paper is to investigate several analytical methods of solving first passage (FP) problem for the Rouse model, a simplest model of a polymer chain. We show that this problem has to be treated as a multi-dimensional Kramers' problem, which presents rich and unexpected behavior. We first perform direct and forward-flux sampling (FFS) simulations, and measure the mean first-passage time $\tau(z)$ for the free end to reach a certain distance $z$ away from the origin. The results show that the mean FP time is getting faster if the Rouse chain is represented by more beads. Two scaling regimes of $\tau(z)$ are observed, with transition between them varying as a function of chain length. We use these simulations results to test two theoretical approaches. One is a well known asymptotic theory valid in the limit of zero temperature. We show that this limit corresponds to fully extended chain when each chain segment is stretched, which is not particularly realistic. A new theory based on the well known Freidlin-Wentzell theory is proposed, where dynamics is projected onto the minimal action path. The new theory predicts both scaling regimes correctly, but fails to get the correct numerical prefactor in the first regime. Combining our theory with the FFS simulations lead us to a simple analytical expression valid for all extensions and chain lengths. One of the applications of polymer FP problem occurs in the context of branched polymer rheology. In this paper, we consider the arm-retraction mechanism in the tube model, which maps exactly on the model we have solved. The results are compared to the Milner-McLeish theory without constraint release, which is found to overestimate FP time by a factor of 10 or more.
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
In this article, a new methodology is presented to obtain representation models for a priori relation z = u(x1, x2, . . . ,xn) (1), with a known an experimental dataset zi; x1i ; x2i ; x3i ; . . . ; xni i=1;2;...;p· In this methodology, a potential energy is initially defined over each possible model for the relationship (1), what allows the application of the Lagrangian mechanics to the derived system. The solution of the Euler–Lagrange in this system allows obtaining the optimal solution according to the minimal action principle. The defined Lagrangian, corresponds to a continuous medium, where a n-dimensional finite elements model has been applied, so it is possible to get a solution for the problem solving a compatible and determined linear symmetric equation system. The computational implementation of the methodology has resulted in an improvement in the process of get representation models obtained and published previously by the authors.
Resumo:
Reliable detection of JAK2-V617F is critical for accurate diagnosis of myeloproliferative neoplasms (MPNs); in addition, sensitive mutation-specific assays can be applied to monitor disease response. However, there has been no consistent approach to JAK2-V617F detection, with assays varying markedly in performance, affecting clinical utility. Therefore, we established a network of 12 laboratories from seven countries to systematically evaluate nine different DNA-based quantitative PCR (qPCR) assays, including those in widespread clinical use. Seven quality control rounds involving over 21,500 qPCR reactions were undertaken using centrally distributed cell line dilutions and plasmid controls. The two best-performing assays were tested on normal blood samples (n=100) to evaluate assay specificity, followed by analysis of serial samples from 28 patients transplanted for JAK2-V617F-positive disease. The most sensitive assay, which performed consistently across a range of qPCR platforms, predicted outcome following transplant, with the mutant allele detected a median of 22 weeks (range 6-85 weeks) before relapse. Four of seven patients achieved molecular remission following donor lymphocyte infusion, indicative of a graft vs MPN effect. This study has established a robust, reliable assay for sensitive JAK2-V617F detection, suitable for assessing response in clinical trials, predicting outcome and guiding management of patients undergoing allogeneic transplant.
Resumo:
Reliable detection of JAK2-V617F is critical for accurate diagnosis of myeloproliferative neoplasms (MPNs); in addition, sensitive mutation-specific assays can be applied to monitor disease response. However, there has been no consistent approach to JAK2-V617F detection, with assays varying markedly in performance, affecting clinical utility. Therefore, we established a network of 12 laboratories from seven countries to systematically evaluate nine different DNA-based quantitative PCR (qPCR) assays, including those in widespread clinical use. Seven quality control rounds involving over 21,500 qPCR reactions were undertaken using centrally distributed cell line dilutions and plasmid controls. The two best-performing assays were tested on normal blood samples (n=100) to evaluate assay specificity, followed by analysis of serial samples from 28 patients transplanted for JAK2-V617F-positive disease. The most sensitive assay, which performed consistently across a range of qPCR platforms, predicted outcome following transplant, with the mutant allele detected a median of 22 weeks (range 6-85 weeks) before relapse. Four of seven patients achieved molecular remission following donor lymphocyte infusion, indicative of a graft vs MPN effect. This study has established a robust, reliable assay for sensitive JAK2-V617F detection, suitable for assessing response in clinical trials, predicting outcome and guiding management of patients undergoing allogeneic transplant.
Resumo:
Traditional approaches to the use of machine learning algorithms do not provide a method to learn multiple tasks in one-shot on an embodied robot. It is proposed that grounding actions within the sensory space leads to the development of action-state relationships which can be re-used despite a change in task. A novel approach called an Experience Network is developed and assessed on a real-world robot required to perform three separate tasks. After grounded representations were developed in the initial task, only minimal further learning was required to perform the second and third task.
Resumo:
Non-communicable diseases (NCDs) dominate disease burdens globally and poor nutrition increasingly contributes to this global burden. Comprehensive monitoring of food environments, and evaluation of the impact of public and private sector policies on food environments is needed to strengthen accountability systems to reduce NCDs. The International Network for Food and Obesity/NCDs Research, Monitoring and Action Support (INFORMAS) is a global network of public-interest organizations and researchers that aims to monitor, benchmark and support public and private sector actions to create healthy food environments and reduce obesity, NCDs and their related inequalities. The INFORMAS framework includes two ‘process’ modules, that monitor the policies and actions of the public and private sectors, seven ‘impact’ modules that monitor the key characteristics of food environments and three ‘outcome’ modules that monitor dietary quality, risk factors and NCD morbidity and mortality. Monitoring frameworks and indicators have been developed for 10 modules to provide consistency, but allowing for stepwise approaches (‘minimal’, ‘expanded’, ‘optimal’) to data collection and analysis. INFORMAS data will enable benchmarking of food environments between countries, and monitoring of progress over time within countries. Through monitoring and benchmarking, INFORMAS will strengthen the accountability systems needed to help reduce the burden of obesity, NCDs and their related inequalities.
Resumo:
The possibility that we will have to invest effort influences our future choice behavior. Indeed deciding whether an action is actually worth taking is a key element in the expression of human apathy or inertia. There is a well developed literature on brain activity related to the anticipation of effort, but how effort affects actual choice is less well understood. Furthermore, prior work is largely restricted to mental as opposed to physical effort or has confounded temporal with effortful costs. Here we investigated choice behavior and brain activity, using functional magnetic resonance imaging, in a study where healthy participants are required to make decisions between effortful gripping, where the factors of force (high and low) and reward (high and low) were varied, and a choice of merely holding a grip device for minimal monetary reward. Behaviorally, we show that force level influences the likelihood of choosing an effortful grip. We observed greater activity in the putamen when participants opt to grip an option with low effort compared with when they opt to grip an option with high effort. The results suggest that, over and above a nonspecific role in movement anticipation and salience, the putamen plays a crucial role in computations for choice that involves effort costs.
Resumo:
Using the non-minimal version of the pure spinor formalism, manifestly super-Poincare covariant superstring scattering amplitudes can be computed as in topological string theory without the need of picture-changing operators. The only subtlety comes from regularizing the functional integral over the pure spinor ghosts. In this paper, it is shown how to regularize this functional integral in a BRST-invariant manner, allowing the computation of arbitrary multiloop amplitudes. The regularization method simplifies for scattering amplitudes which contribute to ten-dimensional F-terms, i.e. terms in the ten-dimensional superspace action which do not involve integration over the maximum number of theta's.
Resumo:
We consider the minimal chiral Schwinger model, by embedding the gauge non-invariant formulation into a gauge theory following the Batalin-Fradkin-Fradkina-Tyutin point of view. Within the BFFT procedure, the second-class constraints are converted into strongly involutive first-class ones, leading to an extended gauge-invariant formulation. We also show that, like the standard chiral model, in the minimal chiral model the Wess-Zumino action can be obtained by performing a q-number gauge transformation into the effective gauge non-invariant action.
Resumo:
The physical meaning of the recently proposed minimal Wess-Zumino (MWZ) term is discussed. It is shown that the only relativistically acceptable MWZ corresponds to a gauged Floreanini-Jackiw chiral boson. This leads to the conclusion that the very mechanism in action is that of closing families like it happens in the standard model, and not that of the WZ term, in the spirit of Faddeev-Shatashvilli.
Resumo:
Microneurography is a method suitable for recording intraneural single or multiunit action potentials in conscious subjects. Microneurography has rarely been applied to animal experiments, where more invasive methods, like the teased fiber recording technique, are widely used. We have tested the feasibility of microneurographic recordings from the peripheral nerves of rats. Tungsten microelectrodes were inserted into the sciatic nerve at mid-thigh level. Single or multiunit action potentials evoked by regular electrical stimulation were recorded, digitized and displayed as a raster plot of latencies. The method allows unambiguous recording and recognition of single C-fiber action potentials from an in vivo preparation, with minimal disruption of the nerve being recorded. Multiple C-fibers can be recorded simultaneously for several hours, and if the animal is allowed to recover, repeated recording sessions can be obtained from the same nerve at the same level over a period of weeks or months. Also, single C units can be functionally identified by their changes in latency to natural stimuli, and insensitive units can be recognized as 'silent' nociceptors or sympathetic efferents by their distinctive profiles of activity-dependent slowing during repetitive electrical stimulation, or by the effect on spontaneous efferent activity of a proximal anesthetic block. Moreover, information about the biophysical properties of C axons can be obtained from their latency recovery cycles. Finally, we show that this preparation is potentially suitable for the study of C-fiber behavior in models of neuropathies and nerve lesions, both under resting conditions and in response to drug administration.
Resumo:
Simultaneous recordings from the soma and apical dendrite of layer V neocortical pyramidal cells of young rats show that, for any location of current input, an evoked action potential (AP) always starts at the axon and then propagates actively, but decrementally, backward into the dendrites. This back-propagating AP is supported by a low density (-gNa = approximately 4 mS/cm2) of rapidly inactivating voltage-dependent Na+ channels in the soma and the apical dendrite. Investigation of detailed, biophysically constrained, models of reconstructed pyramidal cells shows the following. (i) The initiation of the AP first in the axon cannot be explained solely by morphological considerations; the axon must be more excitable than the soma and dendrites. (ii) The minimal Na+ channel density in the axon that fully accounts for the experimental results is about 20-times that of the soma. If -gNa in the axon hillock and initial segment is the same as in the soma [as recently suggested by Colbert and Johnston [Colbert, C. M. & Johnston, D. (1995) Soc. Neurosci. Abstr. 21, 684.2]], then -gNa in the more distal axonal regions is required to be about 40-times that of the soma. (iii) A backward propagating AP in weakly excitable dendrites can be modulated in a graded manner by background synaptic activity. The functional role of weakly excitable dendrites and a more excitable axon for forward synaptic integration and for backward, global, communication between the axon and the dendrites is discussed.